
www.manaraa.com

  
 

 

 

Fabrication of Electrospun Fibrous Meshes and 3D Porous 
Titanium Scaffolds for Tissue Engineering  

 

 

 

 

A Dissertation 
Presented to 

The Academic Faculty 
 

by 
 

Xiaokun Wang 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
Department of Biomedical Engineering 

College of Engineering 
 
 
 
 

Peking University/Georgia Institute of Techonology/EmoryUniversity 
May, 2013 

 
Copyright © 2013 by Xiaokun Wang 



www.manaraa.com

  
 

 

Fabrication of Electrospun Fibrous Meshes and 3D Porous 
Titanium Scaffolds for Tissue Engineering  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
   
Dr. Haifeng Chen, Advisor 
Department of Biomedical Engineering 
Peking University 

 Dr. Barbara D. Boyan Coadvisor 
Department of Biomedical Engineering
Georgia Institute of Technology 

   
Dr. Ying Luo 
Department of Biomedical Engineering 
Peking University 

 Dr. Zigang Ge 
Department of Biomedical Engineering
Peking University 

   
Dr. Jianzhong Xi 
Department of Biomedical Engineering 
Peking University 

 Dr. Xin Zhang 
Peking University Third Hospital 

   
  Date Approved:  May 2013 



www.manaraa.com

  
 

III 
 

ACKNOWLEDGEMENTS 

First, I would like to thank my advisors Dr. Haifeng Chen, Dr. Barbara D. Boyan and Dr. Zvi 

Schwartz. In 2007, I came to Dr. Haifeng Chen’s lab and started my journey of biomedical 

engineering.  In my first four years of PhD study, Dr. Chen has exposed me to many different 

perspectives of being a good researcher, like how to think and work independently, and be 

creative. When the GaTech/PKU/Emory joint program first started, Dr. Chen was so 

supportive. Thanks to his support and reference, I successfully went through the application 

and got enrolled in the program, which gave me the incredible experiences in the later life of 

my PhD. In 2011, I came to my second campus, Georgia Institute of Technology, joined 

Boyan/Schwartz lab for the final step of my PhD. It was a completely different environment. 

The support and encouragements from Dr. Boyan and Dr. Schwartz have given me more 

confidence on making further achievements in my research. Boyan/Schwartz lab is a highly 

collaborative lab filled with clinicians, engineers, chemists, and biologists. When I arrived, I 

would say that I was strictly a material engineer. Upon applying the many biological 

techniques in Boyan lab to my materials, I started to grasp the biological concepts. Besides 

the research, I also learned how to get organized on my research, how to properly interpret 

the data, thoroughly critique a paper, and more importantly, how to make a presentation and 

give a talk. For a student aiming for academia, Dr. Boyan is my role model, as a successful 

academic professor, a productive industry collaborator, an energetic team leader and a 

considerable mentor. I wish one day I could be like her, an outstanding researcher and an 

incredible stylist. Dr. Schwartz is the person who was involved in the design of the last 

experiment conducted in this thesis. I would also like to thank my thesis committee members. 

Dr. Luo, Dr. Ge, Dr. Xi, Dr. Zhang. I remembered when I did my thesis proposal, they had to 

stay up till 10:30pm with me because of the time difference. 



www.manaraa.com

  
 

IV 
 

I would also like to thank the members of Chen lab Boyan/Schwartz lab. They have been 

really helpful throughout the years. I would like to thank Song Yun, Yujing Yin, Ling Yin, 

Shize Liu, Yiqun Cong, they were with me when I was in Dr. Chen’s lab, we set up the whole 

lab and share the precious moments together. Also thank Dr. Yingfang Ao’s lab in Peking 

University Third Hospital. Dr. Zhenxing Shao and Dr. Jingxian Zhu, they helped me for most 

of the cell experiments in specific aim 1 and 2. Also I want to thank the members in Dr. 

Changyong Wang’s lab in Academy of Military Medical Sciences, Miss Tong Hao who 

helped me in the alginate project. And I would like to thank Dr. Rolando Gittens in 

Boyan/Schwartz lab, the most important collaborator and a true friend. I would like to thank 

Jiaxuan Chen and Qingfen Pan, thank you so much for helping me in the beginning when I 

had difficulties communicating with people. Reyhaan Chaudhri, Alice Cheng and Shirae 

Leslie, thank you so much for editing “Xiaokun style” papers for me. Ms. Brentis Henderson, 

Shannon Sullivan, Sharon Hyzy in Atlanta, and Jialei Luo in Beijing have made the 

administration process and lab work so much easier. All of the Boyan laboratory graduate 

students have made my life here more enjoyable: Reyhaan Chaudhri, Chris Lee, Khairat El- 

Baradie, Chris Hermann, Rolando Gittens, Junghwa Park, Maryam Doroudi, Shirae Leslie, 

Qingfen Pan, Erin Hewitt, James Wade, Alice Cheng, Marcus Walker, and Henry Mei. Last 

but not least, I would like to thank Dr. Cheng Zhu and Dr. Shiyi Chen for setting up this great 

program.  I would also like to thank my parents. They have always been there to support, 

motivate and comfort me. Without their help, I would not get to where I am today. 



www.manaraa.com

 

V 
 

Table of Contents 

ACKNOWLEDGEMENTS ............................................................................................. III 

LIST OF TABLES ............................................................................................................... VII 

LIST OF FIGURES ........................................................................................................... VIII 

SUMMARY ...................................................................................................................... XI 

CHAPTER 1. INTRODUCTION...................................................................................... 1 

CHAPTER 2. FABRICATION OF HYDROXYAPATITE NANOPARTICLES AND 
FUNCTIONAL PEPTIDE MODIFIED POLYCAPROLACTONE ELECTROSPUN 
MESHES AND THERMAL POLYMERIZED ALGINATE HYDROGELS ................ 13 

2.1 Fabrication of Pure PCL, PCL/HA Composite and Functional Peptide Modified Nanofibers 13 
2.1.1 Introduction ............................................................................................................................................... 13 
2.1.2 Materials and Methods .............................................................................................................................. 15 
2.1.3 Results ......................................................................................................................................................... 18 
2.1.4 Discussion ................................................................................................................................................... 24 
2.1.5 Conclusion .................................................................................................................................................. 25 

2.2 Characterization of Thermal Polymerizable Alginate-GMA Hydrogel for in situ Cell 
Encapsulation ...................................................................................................................................... 26 
2.2.1 Introduction ............................................................................................................................................... 26 
2.2.2 Materials and methods .............................................................................................................................. 27 
2.2.3 Results and Discussion .............................................................................................................................. 29 
2.2.4 Conclusion .................................................................................................................................................. 40 

2.3 References ..................................................................................................................................... 41 

CHAPTER 3. FABRICATION OF ELECTROSPUN TITANIA-BASED NANOFIBER 
MESHES AND EVALUATIONS OF THE MORPHOLOGY AND OSTEOGENIC 
POTENTIAL ................................................................................................................... 47 

3.1 Fabrication and Characterization of Titania-Based Nanofiber Meshes ................................... 47 
3.1.1 Methods ...................................................................................................................................................... 47 
3.1.2 Results ......................................................................................................................................................... 48 
3.1.3 Conclusion .................................................................................................................................................. 52 

3.2 Fabrication of Electrospun Silica-titania Nanofibers with Different Silica Content and 
Evaluation of The Morphology and Osteoinductive Properties ..................................................... 54 
3.2.1 Introduction ............................................................................................................................................... 54 
3.2.2. Materials and Methods ............................................................................................................................. 55 
3.2.3 Results ......................................................................................................................................................... 58 
3.2.4 Discussion ................................................................................................................................................... 64 
3.2.5 Conclusion .................................................................................................................................................. 66 



www.manaraa.com

 

VI 
 

3.3 Effect of Structural Properties of Electrospun TiO2 Nano-fibrous Meshes on their 
Osteogenic Potential .......................................................................................................................... 67 
3.3.1 Introduction ............................................................................................................................................... 67 
3.3.2 Materials and Methods .............................................................................................................................. 68 
3.3.3 Results ......................................................................................................................................................... 71 
3.3.4 Discussion ................................................................................................................................................... 82 
3.3.5 Conclusions................................................................................................................................................. 85 

3.4 References ..................................................................................................................................... 87 

CHAPTER 4. THREE-DIMENSIONAL TITANIUM SCAFFOLDS PROMOTE 
OSTEOBLAST MATURATION AND INTEGRIN Α2Β1 MEDIATED MECHANISM
 ......................................................................................................................................... 94 

4.1 Introduction ................................................................................................................................... 94 

4.2. Materials and Methods ................................................................................................................ 96 

4.3. Results .......................................................................................................................................... 99 

4.4. Discussion .................................................................................................................................. 109 

4.5 Conclusion ................................................................................................................................... 112 

4.6 References ................................................................................................................................... 113 

CHAPTER 5. SUMMARY ............................................................................................ 116 

5.1 Fabrication of Hydroxyapatite Nanoparticles and Functional Peptide Modified 
Polycaprolactone Electrospun Meshes and Thermal Polymerized Alginate Hydrogels ........... 116 

5.2 Fabrication of Electrospun titania-based nanofiber meshes and evaluations of the 
morphology and osteogenic potential ............................................................................................ 116 

5.3 Three-dimensional titanium scaffolds promote osteoblast maturation and integrin α2β1 
mediated mechanism ........................................................................................................................ 118 

5.4 Conclusion ................................................................................................................................... 119 

List of Publication ............................................................................................................................. 121 

VITA ............................................................................................................................. 122 



www.manaraa.com

 

VII 
 

List of Tables 
Table 2-1. Thermalpolymerized AA-GMA hydrogels investigated (0.5ml aqueous solution) ..... 33 
 
Table 3-1. Elemental composition ± standard deviation (SD) of electrospun meshes analyzed by 

XPS .............................................................................................................................................. 51 
 
Table 3-1. Elemental Composition and Surface Roughness ± standard deviation (SD) of titania-

silica meshes ................................................................................................................................ 61 
 
Table 3-2. Surface roughness of TiO2 meshes measured by LCM. ................................................ 76 
 
Table 3-3. Elemental composition of TiO2 meshes analyzed by EDX............................................ 76 
 
Table 3-4. Surface elemental composition of TiO2 meshes analyzed by XPS. .............................. 76 
 
Table 4-1. Elemental Composition and Surface Roughness ± standard deviation (SD) ............. 102 
 



www.manaraa.com

 

VIII 
 

List of Figures 
Figure 1-1. Setup of electrospinning .................................................................................................... 2 
 
Figure 1-2. Commercially available trabecular bone implant. ......................................................... 5 
 
Figure 2-1. SEM images of electrospun PCL fibers with different concentrations. (a,b) 0.08g/ml, 

(c,d) 0.20g/ml, (e,f) 0.30g/ml ...................................................................................................... 19 
 
Figure 2-2. SEM images of pure PCL and PCL/HA composite electrospun fibers, (a) pure PCL 

fibers, (b) PCL/HA composite without surfactant addition, (c) PCL/HA composite with 
span-80 addition, (d) PCL/HA composite with CTAB addition. ............................................ 20 

 
Figure 2-3. FITC-labeled peptides were covalently conjugated with PCL meshes, and were 

characterized via SEM. Sulfo-SMCC was used as a crosslinker between the FITC labeled 
peptides and the PCL electrospun fibers (A). After conjugation, homogeneous green 
fluorescence on PCL fibers was visualized under a confocal microscope (B). The structure 
of peptide-conjugated and pure PCL meshes with lattice (C to F), thick non-woven (G to J), 
and lower porosity (K-N) were examined via SEM. ................................................................ 22 

 
Figure 2-4. The peptide surface density/amount and homogeneity of the immobilized peptides 

on PCL meshes was evaluated via HPLC. The amino acids in the E7- and M7-conjugated 
PCL mesh samples were identified (B) According to the spectrum of the standard amino 
acid monomers (A). A quantitative analysis was conducted based on the calculation of the 
“peak-area” of every amino acid for E7, M7, or RGD to indicate the conjugation efficiency 
(C). ............................................................................................................................................... 23 

 
Figure 2-5. Reaction Scheme of the macronomomer AA-GMA ..................................................... 33 
 
Figure 2-6. H NMR spectra of (A) Sodium alginic acid and (B) the AA-GMA macromonomer 34 
 
Figure 2-7. SEM images of the (A) 0.03g/ml AA-GMA, (B) 0.05g/ml AA-GMA, (C) 0.06g/ml AA-

GMA, (D) 0.07g/ml AA-GMA freeze-dried hydrogen. The bar is 100μm. ............................ 35 
 
Figure 2-8. Swelling Ratio of AA-GMA hydrogel of different concentration ............................... 36 
 
Figure 2-9. Representative hematoxylin-eosin stained sample of polyAA-GMA hydrogel with 

subjacent muscle. (A) Hydrogels removed 1 week after injection, (B) 2 weeks after 
injection. The bar is 100μm ....................................................................................................... 37 

 
Figure 2-10. Cell viability of HUEVCs encapsulated in AA-GMA hydrogels at the (A) 0.03g/ml 

for 24h; (B)0.05g/ml for 24h; (C) 0.07g/ml for 24h; The bar is 100μm. (D) live/dead assay, 
the histogram refers to the percentage of live cells in the different groups in 96h. .............. 38 

 
Figure 2-11. Cell growth of HUEVCs encapsulated in AA-GMA hydrogels at the (A) 0.05g/ml 

for 24h; (B) 0.05g/ml for 96h (C) Cell viability in 0.05g/ml hydrogels during 96h. (D) Cell 
number in 0.05g/ml hydrogels during 96h. * Vs 24h P < 0.05 using one way ANOVA 
analysis. ....................................................................................................................................... 39 

 
Figure 3-1. SEM images and analysis of the morphology of the electrospun nano-fiber silica-

titania meshes produced with (a,b) 6% PVP TiO2 (c,d) 10% PVP TiO2 (e,f) silica-
titania50/50 .................................................................................................................................. 49 

 
Figure 3-2. Histogram of diameter distribution of nano-fibers on the meshes ............................. 50 



www.manaraa.com

 

IX 
 

 
Figure 3-3. XRD spectra of (A) TiO2 meshes and (B) silica-titania50/50 meshes. Respective rutile 

(^) and anatase (*) reference peaks are marked according to JCPDS database .................. 51 
 
Figure 3-4. SEM images and analysis of the morphology of the electrospun nano-fiber silica-

titania meshes produced with (a) Ti:Si=3:7 (b) Ti:Si=1:1 (c) Ti:Si=7:3, (d-f) histogram 
reveals thinner nano-fibers on the meshes with higher silica content compared to the 
meshes with lower silica content. The scale bar is 2µm .......................................................... 60 

 
Figure 3-5. XRD spectra of three groups of nano-fiber meshes, and respective silica and anatase 

reference peaks (JCPDS database). .......................................................................................... 62 
 
Figure 3-6. (A) Confocal Microscope images of the morphology of MSCs cultured on the nano-

fiber silica-titania meshes. (B) Effects of structural properties of electrospun nano-fiber 
silica-titania meshes on MSCs osteogenic differentiation. (a) cell number, (b) ALP specific 
activity, (c) OCN, and (d) OPNlevels were measured. Data represented are the mean ± SE 
of six independent samples. * refers to a statistically-significant p value below 0.05 vs. 
control; ^ refers to a statistically-significant p value below 0.05 vs. Ti:Si=3:7; $ refers to a 
statistically-significant p value below 0.05 vs. Ti:Si=1:1 ......................................................... 63 

 
Figure 3-7. LCM images of both flat and patterned sides of the TiO2 meshes, made with 6% and 

10% PVP. The nanofibers on the flat side of the meshes are randomly aligned, whereas the 
patterned side of the meshes has a clear cross-hatch pattern, with ridges of aligned 
nanofibers. ................................................................................................................................... 73 

 
Figure 3-8. SEM images and analysis of the morphology of the electrospun nanofiber TiO2 

meshes produced with (a,b) 6% or (c, d) 10% PVP. (e) Histograms at low magnification 
show similar pore sizes for both mesh formulations. However, (f) histograms at higher 
magnification reveal thinner nanofibers on the 6% PVP meshes compared to the 10% PVP.
 ...................................................................................................................................................... 74 

 
Figure 3-9. XRD spectra of 6% and 10% TiO2 nanofiber meshes. ............................................... 77 
 
Figure 3-10. SEM images at different magnifications of the morphology of MG63 osteoblast-like 

cells cultured on the flat side of the nanofiber TiO2 meshes. ................................................. 79 
 
Figure 3-11. SEM images at different magnifications of the morphology of MG63 osteoblast-like 

cells cultured on the patterned side of the nanofiber TiO2 meshes. ...................................... 80 
 
Figure 3-12. Effects of structural properties of electrospun nanofiber TiO2 meshes on osteoblast 

maturation. MG63 cells were plated on the flat or patterned side of both 6% and 10% PVP 
TiO2 meshes and grown to confluence. At confluence, (a) cell number, (b) ALP specific 
activity, (c) OCN, (d) OPG and (e) VEGF levels were measured. Data represented are the 
mean ± SE of six independent samples. ⁄Statistically significant p value below 0.05 vs. all 
TiO2 groups; ^statistically significant p value below 0.05 vs. TCPS; #statistically 
significant p value below 0.05 vs. flat side of the same formulation; $statistically significant 
p value below 0.05 vs. 6% PVP of the same side. .................................................................... 81 

 
Figure 4-1 LCM and SEM imagens of 3D titanium scaffolds. A: the LCM image of 3D scaffold, 

which has interconnected porous structure. B-E: the surface structure of un-etched (B.C) 
and acid-etched (D,E) titanium wire. Increased surface roughness were observed on acid-
etched surfaces. ......................................................................................................................... 103 

 



www.manaraa.com

 

X 
 

Figure 4-2. SEM images at different magnifications of the morphology of MG63 osteoblast-like 
cells cultured for 6 days on the 3D scaffolds (A,B) and acid-etched 3D scaffolds (C,D) and 
for 18 days on the top surface (E) and bottom surface (F) of 3D scaffolds. ........................ 104 

 
Figure 4-3. Effects of structural properties of 3D scaffolds combined with surface roughness 

modificationon MG63 maturation. MG63 cells were plated on the PT, acid PT, 3D and 
acid 3D scaffolds and harvested at confluence on TCPS. (a) Cell number, (b) ALP specific 
activity, (c) OCN, (d) OPG, and (e) VEGF levels were measured. Data represented are the 
mean ± SE of six independent samples. * refers to a statistically-significant p value below 
0.05 vs. PT; ^ refers to a statistically-significant p value below 0.05 vs. acid PT; $ refers to 
a statistically-significant p value below 0.05 vs. 3D. .............................................................. 105 

 
Figure 4-4. Effects of structural properties of 3D microstructure combinedwith surface 

roughnessmodification on normal human osteoblast maturation. Normal human 
osteoblastswere platedand harvested at confluence on TCPS. (a) Cell number, (b) ALP 
specific activity, (c) OCN, (d) OPG, and (e) VEGF levels were measured. Data represented 
are the mean ± SE of six independent samples. * refers to a  statistically-significant p value 
below 0.05 vs. PT; ^ refers to a statistically-significant p value below 0.05 vs. acid PT. ... 106 

 
Figure 4-5. Role of integrin β1 and α2 on osteoblast maturation on 3D scaffolds. MG63 cells 

were plated and harvested at confluence on TCPS. (a) Cell number, (b) ALP specific 
activity, (c) OCN, (d) OPG, and (e) VEGF levels were measured. Data represented are the 
mean ± SE of six independent samples. * refers to a statistically-significant p value below 
0.05 vs. PT among the same cell type; ^ refers to a statistically-significant p value below 
0.05 vs. acid PT among the same cell type; # refers to a statistically-significant p value 
below 0.05 vs. WT MG63; + refers to a statistically-significant p value below 0.05 vs. 
shITGβ1 MG63 ......................................................................................................................... 107 

 
Figure 4-6. . Effects of structural properties of 3D scaffoldsonMG63 cells during culture time. 

MG63were platedand theday when cellsgetconfluence on TCPSis marked as 0. (a) Cell 
number, (b) ALP specific activity, (c) OCN, (d) OPG, and (e) VEGF levels were measured. 
Data represented are the mean ± SE of six independent samples. * refers to a statistically-
significant p value below 0.05 vs. TCPS base line; ^ refers to a statistically-significant p 
value below 0.05 vs. PT at the same time point. .................................................................... 108 

 

 



www.manaraa.com

XI 
 

Summary 

Tissue and organ repair has been the ultimate goal of the surgery repair method. Tissue 

engineering is a multidisciplinary field that is rapidly emerging as a promising new approach 

for repair and regeneration of damaged tissue. In this approach, scaffolds which allow cells to 

invade the construct and guide the cells grow into specific tissue play a pivotal role. 

Therefore designing scaffolds favorable to cellular growth and maturation is of great 

importance. Electrospinning has gained popularity recently as a simple and versatile method 

to produce fibrous structures from polymers and ceramic precursors with nano- to microscale 

dimensions. These electrospun fibers have been extensively applied to create nanofiber 

scaffolds for cardiovascular, urologic and bone tissue engineering applications. Specifically 

for bone and cartilage tissue engineering, polymeric materials have some attractive properties 

such as the biodegradability. However, it is often necessary to functionalize the polymeric 

scaffold surfaces by grafting peptide (such as RGD) or bioactive ceramics (such as 

hydroxyapatite) to achieve better mechanical properties, better cell attachment or better 

biocompatibility. Ceramic scaffolds and implant coatings, such as hydroxyapatite and silica-

based bioglass have also been considered as bone graft substitutes for bone repair because of 

their bioactivity and, in some cases, tunable resorbability. Commonly there is no need to 

functionalize ceramic surfaces with peptide to enhance the biocompatibility, and the physical 

parameters of ceramic scaffolds, such as surface structures and crystallizations can affect cell 

responses. Besides tissue engineering scaffolds, for clinical application, especially for load-

bearing artificial implants, metallic materials such as titanium are the most commonly used 

material. Osseointegration refers to the direct structural and functional connection between 

living bone and the surface of a load-bearing artificial implant. To achieve better 

osseointegration between bone and the implant surface, rough surfaces have become current 

standard of clinical implants. Compared to rough surfaces, three dimensional porous 
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structures can provide enhanced fixation with bone by allowing tissue to grow into the pores. 

In this study, pre-3D electrospun polymer and ceramic scaffolds with peptide conjugation and 

3D titanium scaffolds with different surface morphology were fabricated to testify the 

osteoblast and mensechymal stem cell attachment and differentiation. The overall goal of this 

thesis is to determine if the peptide functionalization of polymeric scaffolds and physical 

parameters of ceramic and metallic scaffold can promote osteoblast maturation and 

mesenchymal stem cell differentiation in vitro to achieve an optimal scaffold design for 

greater osseointegration. This overall goal was evaluated in three specific aims: (1) to 

determine if functionalized electrospun polymer meshes perform better than non-

functionalized meshes with respect to mesenchymal stem cell (MSC) specific attachment; (2) 

to determine if crystallization, surface microstructure or nanostructure of electrospun ceramic 

scaffolds affects osteoblast maturation; (3) to determine if surface texture within 3D 

microenvironment affects osteoblast differentiation. The experimental approach to complete 

the study is to develop pre-3D electrospun meshes and 3D porous scaffolds and access 

differentiation of mensechymal stem cells and osteoblasts in vitro. The results of the studies 

showed with functionalization of MSC-specific peptide, polymer scaffolds behaved with 

higher biocompatibility and MSC affinity. For the ceramic and metallic scaffolds, 

microstructures and nanostructures can synergistically promote osteoblast maturation and 3D 

micro-environment with micro-roughness is an promising design for osteoblast maturation 

and MSC differentiation in vitro compared to 2D surfaces. 
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Chapter 1. Introduction 

1.1 Biodegradable Polymers 

Biodegradable polymers are those which degrade in vitro and in vivo into products that can 

be digested by metabolites or can be the products of metabolites. There are two kinds of 

biodegradable polymers, natural-derived polymer and synthetic polymer. Natural-derived 

polymer, such as collagen, has great biocompatibility and as structurally, they closely mimic 

native cellular environments. However, disadvantages such as the possibility of causing 

immunity reaction, unstable resources and relatively high cost, are also obvious. Synthetic 

polymers, on the other hand, offers attractive advantages, like high reproducibility, highly 

controllable molecular weight, controllable degradation time and good mechanical properties. 

Poly(glacolic-lactic acid) (PLGA) and poly(caprolactone) (PCL) are  most commonly used 

biodegradable polymers in bone and cartilage tissue engineering.  

1.2 Electrospinning 

There are several methods to fabricate ECM-like porous structures, such as template [1], self-

assemble [2,3], phase separation [4,5], salt-leaching [6] and electrospinning [6-8]. 

Electrospinning is a relatively easy and fast process to produce nanofibers. Although the first 

patent on electrospinning technique was published as early as in 1934[9], this technique has 

not been well established until recent times [10-12]. Technically, electrospinning is a process 

that uses a strong electric field to draw a polymer fluid into fine linear fiber [13,14]. The 

basic electrospinning set up is shown in Figure 1-1, which consists of a nozzle, a high 

voltage power supply, a container for polymer fluid and an electrode collector. When a 

viscous fluid is charged with a high voltage, the electrostatic force draws the fluid into liquid 

jet. Because of the interaction between the jet and external electric field and charge repulsion 

inside the jet, the charged jet undergoes a bending or whipping instability to stretch it thinner. 
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Solvent evaporation from the filaments results in solid fibers. In most cases, the as-spun 

fibers deposit randomly on the electrode collector forming a non-woven nanofiber mat. 

 

Figure 1-1. Setup of electrospinning  www.zeably.com/Electrospinning 
 

Previous studies have been made to apply electrospun fibrous scaffolds to bone tissue 

engineering [15,16]. Most of the electrospun scaffolds are made of polymers or composite, 

and some studies are also focused on ceramic scaffolds [17,18]. Electrospun scaffolds have 

also been made using a composite of synthetic and natural polymers to take advantage of the 

mechanical properties of the former and the biological performance of the latter [19,20]. An 

attractive property of organic polymers is that they can be resorbed by the body and fully 

replaced by the native tissue [15,16]. These organic polymers can also provide surfaces for 

cell attachment and growth, but it is often necessary to be functionalized, specifically for 

bone applications, with osteogenic molecules such as hydroxyapatite [21,22] and growth 

factors like bone morphogenic proteins [23] to promote cell differentiation. Electrospun 

fibrous scaffolds are widely used for soft tissue and hard tissue engineering. C.M Vaz et al. 

[24] fabricated PCL/PLA bilayer tube-shaped scaffold and cultured 3T3 fiberblast cells. Cell 
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s can spread and proliferate well on the fibrous scaffold. The results showed the potential of 

electrospun scaffold for blood vessel engineering. For hard tissue application, polymers 

together with ceramic nanoparticles form composite materials, which have been used the 

most. H. Yoshimoto et al. [16] used pure PCL fiber meshes as mesenchymal stem cell 

scaffolds. 4 weeks after culture in osteogenic media, mineralization and type I collagen were 

observed. Lihong Lao et al. [25] use PLGA as polymer matrix and nanosized hydroxyapatite 

were used as ceramic filler to enhance mechanical property and osteogenic property. Similar 

method is used by Chunmei Li et al. [23], they fabricated silk fibroin fiber scaffolds 

containing bone morphogenetic protein 2 and nanoparticles of hydroxyapatite for bone 

formation from human marrow-derived mesenchymal stem cells. In my first study, we 

constructed polycaprolactone (PCL) electrospun meshes by optimizing the polymer solution 

concentration. PCL electrospun fibers were further modified by mixing with HA nanoparticle 

or conjugating with functional peptide to promote the biocompatibility of PCL fibers. The 

peptide is considered as MSCs-homing peptide, which was identified by phage display by Dr. 

Shao in Peking University Third Hospital. The peptide was covalently conjugated to PCL 

meshes to construct a “MSCs-homing device” for bone tissue engineering repair. 

1.3 Titania and Silica-based Bioceramics 

Ceramic scaffolds have been considered as bone graft substitutes for bone repair because of 

their excellent biocompatible and bioactive properties, with calcium-based chemistries such 

as hydroxyapatite [18] and β-tricalcium phosphate [26] commonly used because of their 

bioactivity and, in some cases, tunable resorbability [27]. Studies using solid substrate 

surfaces show that cell differentiation is sensitive to microscale and nanoscale topography 

[28–30]. When osteoblasts or mesenchymal stem cells are cultured on titanium substrates, 

which have an inherent TiO2 ceramic layer on the surface, they exhibit enhanced osteoblastic 

differentiation, particularly if the surface has both microscale and nanoscale features [31–33]. 
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It is well known that titanium makes a practical implant material because of its good 

mechanical properties and biocompatible oxide layer, titania. Although not bioresorbable, 

TiO2 could serve as an attractive substrate for bone tissue engineering due to its good 

biological performance. Similar to titania, silica-containing bioglass products also have 

beneficial osteoconductive functions. In general, the titania-silica binary materials are widely 

studied as implant coating [34-36], and the fibrous titania-silica ceramic are mainly used in 

the field of catalyst and fuel cell area [37-39]. Some researches has showed electrospun silica 

nanofibers have the osteoconductive potentials and the effects of surface structure on MG63 

osteoblast-like cells were also discussed [15]. In fact, surface roughness not only is affected 

by the fiber diameter, but also by the degree of crystallization and morphology of the fibers. 

Previous study showed different content of silica in the titania-silica binary materials has 

influence on crystal phase of titania-silica nanoparticals [39]. With the existence of silica, the 

degree of crystal of titania particles significantly decreased under the same sinter temperature. 

The purpose of my second study was to assess the contributions of nanofiber dimensions and 

microscale pattern on cell response. To do this, pure TiO2 and silica-titania binary nanofiber 

meshes were fabricated using electrospinning to have different surface microroughness and 

nanofiber diameters. 

1.4 Porous Metals 

Most materials used for implants in dental and orthopedic applications are metallic, 

commonly Ti and its alloys, because of their mechanical properties (e.g., weight-to-strength 

ratio) and good biological performance. Bone integration of metal implants is critical for 

successful bone regeneration and healing in dental and orthopedic applications. To enhance 

the bone integration, microroughness has become standard feature required for advanced 

osteogenic responses, also nanofeatured titanium surfaces increased ALP activity and the 

upregulated gene expression of the bone-related proteins. Comparing to the surface 
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modification, 3D porous Ti scaffold (Figure 1-2) allows for bone to grow into the component 

providing enhanced fixation and produces a system which enables stresses to be transferred 

from the implant to the bone. 

 

Figure 1-2. Commercially available trabecular bone implant.  Zimmer Technology 
 
Numerous investigations into porous materials initiated in the early 1970s, including 

polymers, ceramics and metals. Although ceramics have great biocompatibility as we 

mentioned before, the disadvantages such as poor mechanical properties limit the applications 

of porous ceramic materials for load bearing implants. Porous metals are still required by 

orthopaedic load bearing applications. Porous metal fabrication started in 1930’s, and 

biomedical application of porous metal started in the late 1960’s and early 70’s. Gakabte et al. 

[40] pioneered the development of fiber-metal leading to its clinical use as a porous coating 

in hip and knee arthroplasty. In the last two decades, a variety of porous coatings and 

materials have also been used to obtain biological fixation of bone with metal implants in 

load-bearing implants. The most common metallic materials include sintered Ti and CoCrMo 

alloy beads, diffusion-bonded Ti, fiber metal and plasma-sprayed Ti [40-43]. Recently, a new 

series of highly porous metals have been developed and applied in orthopeadic surgery, such 
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as porous tantalum and titanium foams made by different techniques [44].  

Clinical and histological evidence from retrieved implants clearly demonstrate that these 

porous surfaces enhance bone tissue in-growth and are effective in supplementing the 

stability of the implant by biological fixation [45]. Boblyn et al. [46] used highly porous 

tantalum as implants and carried in vivo study in dogs to characterize the mechanical 

property and bone ingrowth between bone and porous implants. And the results show the 

filling of the pores of the implants with new bone increased from 13% at two week to 

42~53% at 4 weeks. V.K. Balla et al. [47] also used porous tantalum structures to study the in 

vitro biological properties. Human fetal osteoblast cell line was used for the cell viability and 

proliferation assay. Although there are some studies as we mentioned previously are focused 

on the fabrication of  porous metal implants and the influence of the implants on cells, the 

mechanism of and detailed behavior including the osteodifferentiation marker expression of 

osteoblast or mesenchymal stem cells on 3D porous scaffold is not well investigated. In the 

part 3 of my thesis, we will systematically study the osteoblast cell and mesenchymal stem 

cell responses on 3D titanium scaffolds. 

1.5 Thesis Objective 

The decade from 2001 to 2011 has been termed the ‘‘bone and joint decade’’, because it has 

been recognized that musculoskeletal injuries are the most reported health condition in the 

USA, with an associated cost close to 8% of the US gross domestic product in lost wages and 

healthcare-related costs [48]. More than 25% of musculoskeletal injuries involve bone 

fractures, with many of these fractures not being able to heal by themselves, thus requiring 

some type of bone void filler that can promote bone regeneration and reduce the healing time 

for the patient. With an aging population in developed countries and statistics showing, for 

example, that one in every two women over 50 years old will suffer an osteoporotic bone 

fracture [49], there is a pressing need to find reliable bone repair materials. Tissue 
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engineering offers a promising approach for repair and regeneration of damaged human tissue. 

A common methodology for bone tissue engineering is the fabrication of three-dimensional 

(3-D) porous scaffolds using biodegradable polymers, biocompatible ceramics or metals. 

The overall goal of this thesis is to understand if the surface chemical functionalization of 

polymeric scaffolds and physical parameters of ceramic and metallic scaffolds can promote 

osteoblast maturation and mesenchymal stem cell differentiation in vitro to achieve an 

optimal scaffold design for greater osseointegration. The thesis includes three aims. The first 

aim is to determine if functionalized electrospun polymer meshes perform better than non-

functionalized meshes with respect to mesenchymal stem cell (MSC) specific attachment. In 

this aim, we hypothesize functionalized bioactive PCL fiber meshes with MSC-adhesion 

specific peptide will promote attachment and spreading of MSCs in vitro and extracting 

MSCs in vivo. To investigate this hypothesis, electrospinning of polymer solution was 

established and a peptide sequence (E7) with seven amino acids which has specific affinity to 

bone marrow-derived MSCs was covalently conjugated onto polycaprolactone (PCL) 

electrospun meshes to construct a ‘MSCs-homing device’ for in situ cartilage regeneration 

[50]. The effectiveness of covalently conjugation was characterized and in vivo and in vitro 

studies were carried on cartilage regeneration. 

The second aim is to determine if crystallization, surface microstructure or nanostructure of 

electrospun ceramic scaffolds affects osteoblast maturation. In this aim, we hypothesize that 

nanofiber morphology and micropatterns of ceramic meshes can synergistically promote 

osteoblast maturation and MSC differentiation. Electrospun titania and titania-silica fiber 

meshes were fabricated by electrospinning and the factors which may influence the fiber 

morphology were optimized. MG63 osteoblast-like cells and MSCs were seeded on the 

different fibrous meshes, and were assayed for cell number, cell differentiation markers as 

well as local growth factors to evaluate the osteogenic effects of the different ceramic meshes. 
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In the first two studies, we focused on the electrospinning fibrous meshes. Although the 

electrospun fiber meshes are considered “3D” in terms of interconnected porous structures, 

the pores are still too small for cells to migrate into the pores. So we continued to study the 

real 3D structure, with pores large enough for cells to migrate. Based on the results of my 

previous two studies, the third aim is to determine if surface texture within 3D 

microenvironment affects osteoblast differentiation. In this aim, we hypothesize that 3D 

porous Ti structures with enhanced surface roughness are optimal for osteoblast maturation 

and MSC differentiation in vitro comparing to 2D surfaces. 3D titanium scaffolds with pore 

size of 150µm were made from titanium meshes. MG63 cells, human osteoblast cells and 

MSCs were seeded onto the scaffolds and assayed for cell number, cell differentiation 

markers as well as local growth factors to evaluate the osteogenic effects.  

In all, this thesis evaluated the effects of functionalized and bioactive scaffolds with different 

chemical or physical parameters on osteoblast maturation and MSC osteo-differentiation in 

vitro and created some favorable designs for tissue engineering scaffolds. 
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Chapter 2. Fabrication of Hydroxyapatite Nanoparticles and 
Functional Peptide Modified Polycaprolactone Electrospun 

Meshes and Thermal Polymerized Alginate Hydrogels 
 

2.1 Fabrication of Pure PCL, PCL/HA Composite and Functional Peptide 
Modified Nanofibers 
 
2.1.1 Introduction 

Tissue engineering has been considered as a successful approach in multiple clinical 

applications [1-4]. There are three major components which are crucial for tissue engineering, 

including the development of a biocompatible scaffold, living cells, and/or bioactive 

molecules. These parameters form a construct system that promotes tissues repair and 

regeneration [5].Biodegradable polymers are considered to be an ideal choice for scaffolds. 

For bone repair and regeneration, PCL, which has been approved by the United States Food 

and Drug Administration (FDA) in many medical applications, has been widely used for 

biomaterial and biomedical applications because of its slow degradability, good 

biocompatibility, and superior rheological and viscoelastic properties [6, 7]. The design and 

preparation of nanoscale fine structures have attracted great attention because of their 

potential unique properties and applications. The electrospinning technique has been reported 

to be a simple and versatile method to produce fibrous structure with nanoscale to microscale 

dimensions from synthetic and natural polymers [8-13]. This technique allows for the 

production of polymer fibers with diameters varying from 3 nm to greater than 5µm. Potential 

applications of electrospinning include filtration membranes, catalytic nanofibers, fiber-based 

sensors, and tissue engineering scaffolds [14-22]. One attractive feature of electrospinning is 

the simplicity and inexpensive nature of the setup; the typical electrospinning setup consists 

of a syringe pump, a high voltage source, and a collector. During the electrospinning process, 

a polymer solution is held at a needle tip by surface tension. The application of an electric 
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field using the high-voltage source causes charge to be induced within the polymer, resulting 

in charge repulsion within the solution. This electrostatic force opposes the surface tension; 

eventually, the charge repulsion overcomes the surface tension, causing the initiation of a jet. 

As this jet travels, the solvent evaporates and an appropriate collector can be used to capture 

the polymer fiber. There are different parameters which influence electrospinning process, as-

prepared fiber diameter and morphology, including voltage, solution concentration, solvent 

polarity, feeding rate, tip-collector distance and collector morphology. In this study, we 

focused on the influences of solution concentration, solvent polarity and collector 

morphology on the electrospun polymer fiber morphology. 

Electrospinning technique was first applied to polymer fiber fabrication, and the 

biodegradable fibers are widely used as tissue engineering scaffolds. However, pure polymer 

fibers are not favorable for cells to attach or differentiate, so functionalization by bioglass or 

peptide is needed. Hydroxyapatite (HA) is among the family of calcium phosphate-based 

bioceramics [23, 24]. Due to its nontoxicity, bioactivity and osteoconductivity, and similarity 

of its chemical and crystalline structures as the nature bone minerals [25, 26], the HA 

particles are also frequently applied solely or as a major component of the bone repair 

biomaterials. The nano-sized HA can improve the mechanical properties and support calcium 

and phosphate delivery after implantation as well. Therefore, incorporation of the nano-HA 

into polymer matrix is assumed to mimic the nature bone structure as well as enhance cell 

growth and response [27, 28]. Together with the advantages of synthetic biopolymers, 

compounding of the biopolymers and HA is one of the supreme methods for obtaining bone 

tissue engineering scaffolds [29-33].  

In addition to the polymer/bioceramic composite, the use of adhesive peptides to modify 

polymer scaffolds is also a major method to promote the biocompatibility of pure polymer 

scaffolds. Arginine-glycine-aspartic acid (RGD), a peptide derived from fibronectin in the 
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extracellular matrix (ECM), is best known for cell adhesion on synthetic material surfaces 

[34-36]. However, this peptide lacks specificity for the general existence of fibronetin in all 

cells. In this study, a seven amino-acid peptide was identified by phage-display, which has 

the specific affinity to mensechymal stem cells (MSCs). MSCs are multi-potential cells that 

can differentiate into bone, cartilage, fat, muscle, marrow stroma, and other tissue types when 

induced by the appropriate biological cues in vitro and in vivo. MSCs are considered to be 

the first choice for repairing the site of tissue damage [37-45]. However, due to the 

complicated environment in vivo, the inability to target MSCs in tissues of interest with high 

specificity has become a barrier for stem cell therapies [46-49]. The low efficiency and 

engraftment problems of MSCs become more acute in endogenous stem cell-based therapies 

[50].  In this study, hydroxyapatite nanocrystals were used as filler and different surfactant 

were used to optimize the distribution of HA particles. Beside HA nanoparticles, the 

microstructures of the PCL meshes were controlled by adjusting the solvent composition and 

collector morphology and PCL meshes were modified with the affinity peptide of MSCs and 

MSC attachment and early stage proliferation were also investigated. 

 

2.1.2 Materials and Methods 

PCL was obtained from Polysciences incorporation. Hydroxyapatite nanoparticles with 

diameter of 200nm were obtained from Alfa Aesar. Methylene dichloride and cetyltrimethyl 

ammonium bromide were provided by Beijing Chemical (Beijing, China).  

Fabrication of the PCL meshes 

PCL was dissolved in 1ml methylene dichloride to form 0.08~0.30 g/ml concentration. In the 

typical electrospinning setup, 1ml PCL solution with different concentrations were loaded in 

glass syringe, the feeding speed is 0.4ml/h, the collection distance was 10cm and the applied 

voltage was 8kV. The electrospun fibers were collected on the flat plate. 
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For the composite fiber fabrication, 0.05g Span-80 or CTAB powder was added in 2ml 

methylene dichloride, followed by adding 0.5g HA power in the solution. The suspension 

was sonicated for 15min to disperse the hydroxyapatite, into which 4.0 g PCL was added. 

The mixture was further magnetically stirred for 15 min, followed by ultrasonication for 

another 15 min to obtain the well-mixed PCL/HA suspension with a PCL concentration of 

20%. And the mixture was electrospun using typical procedure described before. The fiber 

morphology was observed by SEM (Hitachi S-4800). 

Based on the different applications, three different types of PCL meshes are being fabricated 

using electrospinning in this study. Thick, non-woven PCL fibrous meshes were prepared 

from a 0.2g/ml PCL solution. In a typical procedure, 2 g of PCL (MW 43,000 to 50,000) was 

dissolved in 10 mL of CH2Cl2. After stirring for 3 h until PCL was completely dissolved, 1 

mL of the solution was loaded into a glass syringe with a blunt-ended stainless steel needle. 

The feeding rate, collection distance, and applied voltage were controlled at 0.5 mL/h, 10 cm, 

and 8 kV, respectively. The electrospun fibers were collected on a flat plate covered by 

aluminum foil. For the lattice-patterned PCL meshes used in the study of cell adhesion, the 

same PCL solution was used for electrospinning, whereas the copper mesh was used as a 

collector for the PCL fiber mesh to have a lattice pattern. In addition, aligned fibers with low 

porous density and thin fiber diameter were fabricated by using CF3OH as solvent and rolling 

tube, with the rotation speed of 2000rps, as the collector. 

Peptide conjugation with PCL meshes and characteristics 

All peptides were provided by Peking University Third Hospital. To briefly describe the 

synthesis of the peptide, a specific peptide was marked as E7, which was identified in the 

hMSC-affinity clones and designed by Institute of Sports Medicine, Peking University Third 

Hospital. A peptide with the same amino acids as E7 but different sequences was used as the 

negative control and marked as M7. The commonly used cell affinity peptide, comprising 
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three amino acids RGD (arginine, glycine, and aspartic acid), was used as the positive control. 

All the peptides were designed to have an extra cysteine linked to the carboxyl (C) terminus 

of all peptides to facilitate PCL polymer conjugation and fluorescein- 5-isothiocyanate (FITC) 

(Fanbo Biochemicals Co., Ltd., Beijing, China) labeling. Peptides were stored in -20℃ and 

dissolved in DMSO to yield a 2 mg/mL concentration before usage. 

The PCL meshes were immersed into a 10% w/v solution of 1,6-hexanediamine (Sigma, St. 

Louis, MO, USA) prepared in isopropanol at 37℃ for 1 h. After the exposure, the PCL 

meshes were thoroughly washed in ultrapure water and dried under vacuum at room 

temperature. For the conjugation of E7 (EPLQLKM), M7 (MLKPLEQ), and RGD peptides 

to the surface of the aminated PCL meshes, the aminated PCL meshes were washed thrice 

with activation buffer (0.1 M PBS containing 0.15 M NaCl, pH 7.2) before treatment, and 

sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC) 

(Thermo FisherScientific Inc., Rockford, IL, USA) was used as a crosslinker. A total of 500 

mL (2 mg/ mL) sulfo-SMCC solution was added onto the aminated PCL meshes, incubated 

for 1 h at room temperature, and washed with conjugation buffer (activation buffer containing 

0.1 M EDTA, pH 7.0). The peptides were dissolved in conjugation buffer at a concentration 

of 0.1 mM. Up to 500 mL of the peptide solution was applied onto the sulfo-SMCC-treated 

PCL scaffold and incubated overnight at 4 ℃. The peptide conjugated PCL meshes were 

thoroughly washed thrice with ultrapure water, and dried under vacuum at room temperature. 

After the conjugation, the meshes were observed under a scanning electron microscope (SEM) 

and a confocal microscope. The peptide surface density/amount and the homogeneity of the 

immobilized peptides on the PCL meshes were measured by high performance liquid 

chromatography (HPLC) [51]. Briefly, every three meshes from E7, M7, and RGD group 

were weighed using an analytical balance, respectively, and hydrolyzed in a 6 N HCl aqueous 

solution at 100℃ for 24 h. Subsequently, 2,4-dinitroflurobenzene (DNFB, Sigma, St. Louis, 
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MO, USA) was used for pre-column derivation. HPLC analysis was performed using an LC-

20A liquid chromatograph (SHIMADZU, Shimadzu, Japan) and an Inertsil ODS-4 (4.6 mm - 

150 mm, 5 mm) column (GL Science, Tokyo, Japan) following a previously described 

protocol with modifications. All amino acid monomers used as a standard were purchased 

from Sigma (St. Louis, MO, USA) and Amrsco (Solon, OH, USA). The SEM, Confocal 

Microscope and HPLC analysis was done by experts in Peking University Medical School. 

2.1.3 Results 

Electrospun pure PCL fibers obtained from different solution concentration were shown in 

Figure 2-1. At lowest concentration 0.08g/ml (Figure 2-1a,b), no fiber was formed, only 

beads were observed under SEM. As concentration increasing, more fibers and fewer beads 

were observed. When the concentrations reached 0.20g/ml and 0.30g/ml (Figure 2-1c-f), 

fibers were formed and relatively thicker fibers were formed with 0.03g/ml solutions (Figure 

2-1e, f). The three-dimensional fibrous mesh consists of fibers with diameters ranging from 

500nm to 2µm and the fibers were randomly oriented and interconnected voids were present 

(Figure 2-1c, e). 

PCL/HA composite with different types of surfactant were fabricated. The fibrous mesh had a 

randomly interconnected and highly porous structure. The fibers were evenly distributed in 

general. Pure PCL fibers were electrospun as control (Figure 2-2a). Without surfactant, HA 

nanoparticles formed clusters (Figure 2-2b), with nonionic surfactant Span-80 (Figure 2-2c), 

HA became more evenly distributed, but smaller clusters can still be observed in the fibers. 

However, with ionic surfactant CTAB (Figure 2-2d), HA nanoparticles have uniform 

distribution and higher density in the fibers. 



www.manaraa.com

 

19 
 

 

 

Figure 2-1. SEM images of electrospun PCL fibers with different concentrations. (a,b) 
0.08g/ml, (c,d) 0.20g/ml, (e,f) 0.30g/ml 
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Figure 2-2. SEM images of pure PCL and PCL/HA composite electrospun fibers, (a) pure 
PCL fibers, (b) PCL/HA composite without surfactant addition, (c) PCL/HA composite with 
span-80 addition, (d) PCL/HA composite with CTAB addition. 



www.manaraa.com

 

21 
 

Characterization of peptide-conjugated PCL meshes  

The chemical reaction of the conjugation was shown in Fig 2-3A. After conjugation, the PCL 

fibers showed a homogeneous green fluorescence because the peptides were pre-labeled with 

FITC (Fig. 2-3B), indicating a homogeneous conjugation of the peptides on the PCL surface. 

SEM images revealed the different mesh morphology with different collectors and solvents. 

With copper meshes as collector, the electrospun meshes tended to copy the pattern of the 

copper meshes (Fig. 2-3 C-F); the aluminum foil made randomly distributed fibers (Fig. 2-3 

G-J), and rolling tube collector made aligned, low porous density fibers (Fig.2-3 K-N). No 

significant differences between the peptide-conjugated PCL meshes and pure PCL meshes on 

the morphology of the meshes (Fig. 2-3C to N). HPLC-based amino acid analysis was 

conducted to evaluate the peptide surface density/amount and the homogeneity of the 

immobilized peptides on the PCL meshes. Based on the spectrum of the standard amino acid 

monomers (Fig. 2-4A), the amino acids in E7- and M7-conjugated PCL meshes were 

identified (Fig. 2-4B), which showed consistency with the correspondent peptide sequences. 

All the peptide-conjugated PCL meshes were analyzed using the same protocol. A 

quantitative analysis was also conducted based on the calculation of the “peak-area” of every 

amino acid. At the same initial concentration, E7, M7, and RGD had similar conjugated 

efficiencies (Fig. 2-4C), especially at 0.1 nM. This result indicates that the method to 

conjugate peptides with PCL meshes is stable and valid. The peptides at 0.1 nM 

concentration was used in subsequent experiments for conjugation.
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Figure 2-3. FITC-labeled peptides were covalently conjugated with PCL meshes, and were 
characterized via SEM. Sulfo-SMCC was used as a crosslinker between the FITC labeled 
peptides and the PCL electrospun fibers (A). After conjugation, homogeneous green 
fluorescence on PCL fibers was visualized under a confocal microscope (B). The structure of 
peptide-conjugated and pure PCL meshes with lattice (C to F), thick non-woven (G to J), and 
lower porosity (K-N) were examined via SEM. 
Image Published: Shao, Z., X. Zhang, Y. Pi, X. Wang, Z. Jia, J. Zhu, L. Dai, W. Chen, L. 
Yin, H. Chen, C. Zhou, and Y. Ao, Biomaterials, 2012. 33(12): p. 3375-3387 
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Figure 2-4. The peptide surface density/amount and homogeneity of the immobilized 
peptides on PCL meshes was evaluated via HPLC. The amino acids in the E7- and M7-
conjugated PCL mesh samples were identified (B) According to the spectrum of the standard 
amino acid monomers (A). A quantitative analysis was conducted based on the calculation of 
the “peak-area” of every amino acid for E7, M7, or RGD to indicate the conjugation 
efficiency (C).  
Image Published: Shao, Z., X. Zhang, Y. Pi, X. Wang, Z. Jia, J. Zhu, L. Dai, W. Chen, L. 
Yin, H. Chen, C. Zhou, and Y. Ao, Biomaterials, 2012. 33(12): p. 3375-3387 
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2.1.4 Discussion 

Previous studies have proved that solution viscosity (as controlled by changing the polymer 

concentration) is one of the biggest determiners of fiber size and morphology when spinning 

polymeric fibers. The relationship between the polymer viscosity and/or concentration on 

fibers obtained from electrospinning has been studied in a number of systems, including 

poly(DL-lactic acid) (PDLA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene oxide) 

(PEO),[52,53]  poly(vinyl alcohol) (PVA),  poly(methyl methacrylate) (PMMA), polystyrene, 

poly(L-lactic acid) (PLLA), gelatin, dextran, and collagen type I-PEO [52-56]. Similar to our 

results, at low polymer concentrations, defects in the form of beads and droplets have been 

observed [56]; the process under these conditions was characteristic of electrospraying rather 

than spinning. Additionally, the presence of junctions and bundles has been seen, indicating 

that the fibers were still wet when reaching the collector. Increasing the solution viscosity by 

increasing polymer concentration yielded uniform fibers with few beads and junctions.  

Polymers and bioceramics such as tricalcium phosphate and HA are osteoconductive and can 

be electrospun to form continuous nanofibers with defined patterns. Uniform random 

nanofibers of PCL/HA were obtained by the electrospinning process. The segregation of HA 

powder was reduced and a good dispersion of HA particles within the polymer matrix was 

obtained during this study by adding surfactant to the solvent. At the same concentration of 

HA, there was a considerate agglomeration of HA particles and broken fiber formation in the 

non-surfactant group. The non-ionic surfactant with the hydrophilic PEG chain improved the 

stability of the suspension. And the optimal performance of a composite material was 

achieved when the small particles are uniformly dispersed throughout the polymer and 

interact strongly with the organic matrix with the addition of ionic surfactant CTAB. 

There are several parameters which can influence the electrospinning process, like 

concentration, solvent polarity, collector morphology, voltage, collecting distance and 
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feeding rate. In this study, to better observe the MSC behavior on PCL meshes with or 

without peptide modification, solvent polarity and collector morphology were chosen to 

manipulate the electrospun meshes. The results we got were consistent with previous study, 

as the higher polarity solvent CF3OH produced thinner fiber diameter and at the early stage of 

collection, the electrospun fibers tended to copy the pattern of the collector [57]. These PCL 

meshes with different morphology provided a better observation of MSC response on the 

peptide-conjugated PCL meshes [58]. In the present study, E7 was covalently conjugated 

onto the PCL electrospun meshes to establish an MSC attracting matrix for both in vitro and 

in vivo [58].  

2.1.5 Conclusion 

In this study, the electrospinning system was set up and the concentration of polymer solution 

was optimized. PCL/HA composite fibrous meshes were also fabricated via electrospining 

and the ionic surfactant was robust for stabilizing PCL/HA suspension to achieve evenly 

distributed composite fibers. An MSC-homing peptide (E7) identified through phage display 

was conjugated with PCL electrospun meshes. The E7-conjugated PCL electrospun meshes 

have shown promoted cell attachment and proliferation compared to pure PCL meshes [58]. 

In addition, in vitro and in vivo study [58] by Dr. Shao in Peking university third hospital 

showed E7 has specificity toward MSCs compared with the RGD-conjugated PCL 

electrospun meshes. This study provides a promising way to improve MSC-based tissue 

engineering repair. 
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2.2 Characterization of Thermal Polymerizable Alginate-GMA Hydrogel 
for in situ Cell Encapsulation 
 
2.2.1 Introduction 

Hydrogels derived from organic materials such as polysaccharides, are promising materials 

for tissue-engineered scaffolds and have attracted many interests in the field of tissue 

engineering. Natural materials have many desirable characteristics such as their three-

dimensional porous structure, biodegradability, good water absorption, and tissue-like elastic 

properties [59-65]. These properties make hydrogels ideal candidates for creating 

environments where cells and tissues can grow [66]. Alginate is an anionic polysaccharide 

produced by brown algae that is widely used in pharmaceutical and biomedical applications. 

Ionic cross-linked alginate, such as calcium alginate is highly characterized and has been 

used for multiple tissue engineering applications [67-72]. While this ionic cross-linked 

alginate cannot gelate in situ, the alginate solution required treatment by calcium solution in 

vitro before the cross-linked hydrogel applied in vivo. 

Recently, synthesis of a polysaccharide modified with thermal cross-linkable or photo cross-

linkable groups, such as an acrylic or a methacrylic group, may provide an alternative method 

for hydrogel formation [73-80]. Most of these works focused on photo cross-linking, which 

utilizes ultraviolet light to initiate a free radical polymerization reaction, forming covalent 

cross-links through the acrylate or methacrylate groups [81,82]. These free radical-cross-

linked hydrogels allow macromonomers to gelate in situ and enables the hydrogels to form 

different shapes to better match the implantation site [83]. Although these photo cross-linked 

hydrogels have many useful properties and have been used as cell carriers for several tissue 

engineering applications including for cartilage, bone, nerve, and liver [84-94], one concern 

with the photo cross-linking process is the potential damage to the cells encapsulated in the 

macromonomers. More importantly, since we cannot use the UV photo cross-linking process 
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in vivo, this limits the use of those hydrogels as injectable hydrogels, and therefore limits 

their therapeutic application. 

In this study, thermal polymerizable alginate-GMA macromonomers were synthesized. 

Thermal initiator was used to avoid UV irradiation, which is harmful to the cells and human, 

and allows the macromonomers to polymerize at physiological temperature. The mild 

reaction conditions enable cell and protein encapsulation as well as in vivo gelation. The 

properties of alginate-GMA were investigated extensively, including gelation time, swelling 

ratio and porosity. Cell viability and proliferation were assessed using the human endothelial 

cell lines HUVEC and L929 in preliminary tests for the potential application of alginate-

GMA as an injectable hydrogel for use in tissue engineering.  

2.2.2 Materials and methods 

Sodium alginic acid (Sigma Aldrich), glycidyl methacrylate (GMA)(Fluka), NaOH (Beijing 

Chemical Works), ammonium persulfate (APS), N’, N’, N’, N’-tetramethylethylendiamine 

(TEMED)(Sigma Aldrich). H-DMEM (GIBCO), FBS (MDgenics Inc), penicillin, 

streptomycin,  Haematoxylin Eosin, propidium iodide and calcein-AM and MTT (Sigma 

Aldrich). 

Synthesis of AA-GMA macromonomers 

Briefly, 2g of sodium alginic acid was dissolved in distilled water to make a 0.02g/ml 

solution of alginate. 5.68g GMA was added to the alginate solution and thoroughly mixed 

with stirring. 5M NaOH was added to adjust the pH to 10. The reaction was conducted at 

60℃ and N2 protection for 4 hours. The solution was precipitated with an excess of ethanol. 

The product was thoroughly washed by ethanol 5-6 times and freeze dried under a vacuum.  

Thermal polymerization of AA-GMA 

To prepare the hydrogels, AA-GMA macromonomers were dissolved in distilled water at 

concentrations of 0.03g/ml to 0.07g/ml, 5% (w/w of AA-GMA) of APS and TEMED were 
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added to the solution. The solution formed hydrogels in a water bath at 37℃ in 5 to 20 

minutes. 

1H NMR 

Sodium alginic acid and AA-GMA samples were dissolved in D2O at a concentration of 

0.005g/ml. 1HNMR spectra was recorded with a 400MHz Bruker AV400 NMR spectrometer. 

The percentage of double bonds was calculated using the formula below (Haa represents H 

atoms in the alginate backbone, Ha represents H atoms in the methyl group of GMA): 

 

Formula 1[34] 

Surface morphology 

The surface morphology of freeze-dried thermal cross-linked AA-GMA hydrogels were 

characterized with a Quanta 200FEG scanning electron microscope operated at 20kV.  

Swelling assay 

A weighed amount of dry thermal cross-linked AA-GMA hydrogel was placed in an excess 

volume of 1X PBS for 24-120 hours. The surface of the hydrogel was blotted with tissue 

paper before the wet weight was measured. The equilibrium swelling ratio (q) was calculated 

as the ratio of the wet weight to the dry weight. 

q= Ww/Wd 

In vivo inflammatory effects 

Male Sprague-Dawley (SD) rats weighing about 250g were used. One hundred microliters of 

0.05 g/ml macromonomer solution with a pre-measured amount of APS and TEMED was 

injected into inner side of each leg. Each week after injection, animals were euthanized and 

surrounding tissues were histologically processed using Haematoxylin-Eosin stains [95]. 

Cell encapsulation and cell viability assay 
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The human endothelial cell line HUVEC was used. Cells were cultured in DMEM with 10% 

fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37℃  in 5% CO2 at 100% 

humidity. Different amounts of AA-GMA with APS and TEMED were dissolved in 1.5ml 

growth media. 1 x 106 cells in growth media were added to the solution and mixed evenly. 

0.5ml of this mixture was then added in 24-well cell culture plates and placed in incubator to 

let the polymerization occur. After 24 hours, hydrogels with cells were transferred into 6-well 

plates and immersed in culture media. 

Cell viability and morphology were characterized at 24, 48, 72, 96 hours after seeding. For 

the cell viability assay, cell-loaded gels were stained with calcein-AM and propidium iodide 

(PI) for 20 minutes at 37℃. All live cells were labeled with calcein-AM and dead cells with 

PI. Cells were imaged using a fluorescence microscope (OLYMPUS IX71).  To analyze cell 

growth, the number of cells in an 8mm2 area was counted in 5 images from each sample. Due 

to the 3D structure, it was necessary to exclude cells outside of the focal plane, so the 

brightness threshold was set to eliminate the background light. This part of work was 

completed with the help with Tong Hao in Dr. Changyong Wang’s lab in Academy of 

Military Medical Sciences. 

2.2.3 Results and Discussion 

Synthesis and characterization of AA-GMA macromonomers and hydrogels 

The thermal polymerized AA-GMA macromonomers were synthesized through reaction of 

the epoxy group of GMA with the hydroxyl group of alginate under an alkaline condition. 

The structure of the AA-GMA macromonomer, shown in Figure 2-5, was confirmed by 1H 

NMR spectroscopy in D2O (Figure 2-6). The methacryloyl group of GMA was effectively 

attached to the available –OH groups of alginate via open-ring reaction of epoxy group [37]. 

Compared with the spectrum of alginate (Figure 2-5 A), six new resonance peaks from the 

AA-GMA macromonomer appeared. This indicates that six different species of H appeared 
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after the reaction, and this illustrates the mechanism of reaction as shown in Figure 2-5. 

From the 1H NMR spectra of the AA-GMA macromonomers, the %DM is determined by 

using the Formula 1 shown before, and under these reaction condition, the %DM is about 

25%. 

Three groups of hydrogels were made with three concentrations of marcomonomer solutions 

and are listed in Table 2-1. The polymerization time was determined by a rheometer. The 

AA-GMA macromonomer underwent a free radical polymerization under thermal condition 

with the addition of initiator. According to Table 2-1, AA-GMA solutions of lower 

concentration have longer polymerization times, while AA-GMA solution of higher 

concentration has shorter polymerization times. This shows that through controlling the 

macromonomer concentration, we can control the polymerization time to meet different 

needs. 

SEM was used to characterize the morphology of the freeze-dried cross-linked AA-GMA 

hydrogel. As shown in Figure 2-7, the freeze-dried hydrogel has porous structure with pore 

size about 50-150μm, which increased with deceasing gel content. 

Swelling property influences the solute diffusion rate, the surface properties of the hydrogel 

and the mass transport properties through the scaffold. Figure 2-8 shows the swelling 

property of AA-GMA hydrogels with different gel concentrations. Basically, the swelling 

ratio increased with decreasing macromonomer content in the gel. This results mainly 

because hydrogels with lower macromonomer concentrations have larger pore sizes, resulting 

in faster transport of water through the gel. Moreover, hydrogels with larger pores can retain 

more water compared to hydrogels with smaller pores. 

In vivo inflammatory assay 

Male SD rats were injected with 0.1ml of 0.04g/ml AA-GMA macromonomer PBS solution 

with initiator for each leg. Each week the rats were euthanized and we found the AA-GMA 
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macromonomer solution had formed a hydrogel in the muscle and the gel was clearly 

distinguishable. Figure 2-9 shows the inflammatory function of AA-GMA hydrogels in vivo 

in two weeks. All stained sections of the smears of AA-GMA hydrogels showed no dense 

collection of neutrophils and macrophages in two weeks. These observations show the AA-

GMA hydrogel has a mild inflammatory effect, indicating good biocompatibility of the AA-

GMA hydrogel. 

Cell encapsulation  

To evaluate the potential use of AA-GMA hydrogel as in situ cell matrices for tissue 

engineering applications, the human endothelial cell line (HUVEC) was used. This cell type 

may have a particular application in vascular grafting or promoting endothelialization of 

implants. Previous studies also indicated that methacrylated polysaccharide was 

cytocompatible [37]. For cell encapsulation, three different concentrations (0.03, 0.05, 

0.07g/ml) of AA-GMA macromonomer were used. Cell viability was observed after thermal-

encapsulation. Figure 2-10 shows the cell viability of the three groups from 24 to 96 hours 

after seeding. Live cells were labeled by Calcein-AM, and dead cells were labeled by PI. 

After 24 to 96 hours in culture, three groups of encapsulated HUVECs all exhibited a high 

percentage of viability. There was no significant difference between the high concentration 

groups and low concentration groups while the higher concentration group had a little 

adverse effect in the first 24 hours (more red-labeled cells observed) (Figure 2-10 A, B, C), 

after 24 hours, the cells started proliferate and the viability in 96h showed no differences 

among the three groups (Figure 2-10 D) Even when the higher concentration was used, few 

dead cells were observed, showing that AA-GMA hydrogels have good cytocompatibility. 

Since the cells were directly mixed with the reaction mixture during in situ gelation, it is 

possible that free radicals generated during the polymerization may have adverse effects on 

cell viability in the first 24h [22], This adverse effect may fade away with the disappearance 
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of free radical. Figure 2-11 shows cell growth in the 0.05g/ml AA-GMA group. Figure 2-11 

A and B shows that the density of green fluorescence increases over time, which suggests an 

increase in cell proliferation in the hydrogels. Figure 2-11 C shows that there are no 

significant changes in cell viability and Figure 2-11 D shows that cell number increased 

during the 96 hour culture time. Both of the results illustrate that the 3D porous structure 

allows cell migration and nutrients transportation. Unlike the ionic hydrogel, which are 

usually pre-manufactured before application, such as alginate microbeads, this novel 

hydrogel can polymerize under physiological temperature, these observation demonstrate the 

hydrogel can not only be pre-manufactured to any structures, but also can be a promising 

injectable hydrogel for in situ gelation for tissue engineering.  
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Table 2-1. Thermalpolymerized AA-GMA hydrogels investigated (0.5ml aqueous 
solution) 
Sample no. AA-GMA 

(g) 

AA-GMA 

concentration 

(g/ml) 

APS (g) TEMED 

(µl) 

Gelation 

Time (min) 

1 0.015 0.03 0.0015 1 22 

2 0.025 0.05 0.0025 2 12 

3 0.030 0.06 0.0030 3 8 

4 0.035 0.07 0.0035 3 5 
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Figure 2-5. Reaction Scheme of the macronomomer AA-GMA 
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Figure 2-6. H NMR spectra of (A) Sodium alginic acid and (B) the AA-GMA 
macromonomer 
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Figure 2-7. SEM images of the (A) 0.03g/ml AA-GMA, (B) 0.05g/ml AA-GMA, (C) 
0.06g/ml AA-GMA, (D) 0.07g/ml AA-GMA freeze-dried hydrogen. The bar is 100μm. 
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Figure 2-8. Swelling Ratio of AA-GMA hydrogel of different concentration 
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Figure 2-9. Representative hematoxylin-eosin stained sample of polyAA-GMA hydrogel 
with subjacent muscle. (A) Hydrogels removed 1 week after injection, (B) 2 weeks after 
injection. The bar is 100μm 
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Figure 2-10. Cell viability of HUEVCs encapsulated in AA-GMA hydrogels at the (A) 
0.03g/ml for 24h; (B)0.05g/ml for 24h; (C) 0.07g/ml for 24h; The bar is 100μm. (D) 
live/dead assay, the histogram refers to the percentage of live cells in the different groups in 
96h. 
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Figure 2-11. Cell growth of HUEVCs encapsulated in AA-GMA hydrogels at the (A) 
0.05g/ml for 24h; (B) 0.05g/ml for 96h (C) Cell viability in 0.05g/ml hydrogels during 96h. 
(D) Cell number in 0.05g/ml hydrogels during 96h. (*103) * Vs 24h P < 0.05 using one way 
ANOVA analysis. 
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2.2.4 Conclusion 

Alginate was modified with glycidyl methacrylate (GMA) to produce an alginate-GMA (AA-

GMA) macromonomer, which polymerized at physiological temperature when using APS as 

an initiator and TEMED as a catalyst. AA-GMA hydrogels exhibited a three-dimensional 

porous structure with an average pore size ranging from 50-150μm, and the pore size 

increased with deceasing macromonomer gel content. Muscle injection in vivo showed the 

AA-GMA solution mixed with initiator could form a hydrogel in situ and exhibited a mild 

inflammatory response. Human endothelial cells (HUVECs) were encapsulated in the AA-

GMA hydrogels in situ at body temperature. Cell viability remained good at low and high 

macromonomer concentrations and cells proliferated well in the hydrogels. These promising 

results show a potential use of AA-GMA hydrogels for in situ tissue engineering scaffold 

applications. 
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Chapter 3. Fabrication of Electrospun titania-based nanofiber 
meshes and evaluations of the morphology and osteogenic 

potential 
 

3.1 Fabrication and Characterization of Titania-Based Nanofiber Meshes 
Electrospun ceramic nanofibers are made by starting polymer solution containing precursors 

of ceramics followed by high temperature pyrolysis. Numerous electrospun ceramic 

nanofibers, including silica (SiO2) and titania (TiO2) nanofibers, have been fabricated and 

studied. Electrospun TiO2 nanofibers have been studied with particular interest because of 

well-studied precursors and wide applications. In this study, pure titania fibers and titania-

silica fibers with different Ti/Si ratio are fabricated and the morphology of electrospun 

titania-based fibers are characterized. 

3.1.1 Methods 

The titania and silica/titania fibrous meshes were prepared from titanium(Ⅳ) 

isopropoxide(TiP), tetraethyl orthosilicate(TEOS), poly(vinyl pyrrolidone)(PVP, Mw≈1 300 

000) and acetic acid. In a typical procedure, 0.5ml of TiP was mixed with 0.5ml ethanol and 

0.5ml acetic acid. After 10min stirring, the sol was added to 1.5ml 6% and 10%PVP ethanol 

solution, followed by magnetic stirring for 30min.The starting solution of titania-silica fibers 

were made of sol containing 0.25ml of TiP, 0.25ml TEOS mixed with 0.5ml ethanol and 

0.5ml acetic acid. Then the sol was added to 1.5ml 10%PVP ethanol solution. In the 

electrospinning set up, the collection distance was 10cm and the applied voltage was 8kV. 

The electrospun fibers were collected on the flat plate. Finally, the PVP was removed from 

these fibers by heating them in air at 700℃ for 3h.  

Sample topography and cell morphology were examined by scanning electron microscopy 

(Hitachi S-4800) using a 15 kV accelerating voltage. Fiber diameter distribution was 

evaluated by image analysis software (ImageJ, NIH software) from three images of at least 
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two different samples. Fiber diameter was evaluated from at least 150 fibers at 16,000X 

magnification.  

The chemical composition of the scaffolds was examined by XPS(Axis Ultra by Kratos 

Analytical Ltd.), of at least two different samples with 3 spots per sample. Additionally, 

crystal structure x-ray diffraction (XRD) was investigated by RAPID-S (Rigaku Denkico Ltd.) 

3.1.2 Results 

Figure 3-1 shows the SEM images of electrospun fibers. These images reveal that fibers have 

diameters varying from around 100nm to 300nm. Under lower magnification (Figure 3-

1a,c,e), fibers in each group were evenly distributed in general, and higher magnification 

images (Figure 3-1b,d,f) revealed more detailed structures of the fiber. Comparing Figure 3-

1b and Figure 3-1d, it is observed that the average diameter of fibers increases with the 

increasing starting polymer concentration. Also, even using the same concentration of 

starting polymer, pure titania meshes have thicker fibers than titania-silica50/50 hybrid 

meshes (Figure 3-1d, f). Besides the diameter, the existence of silica also has influences on 

fiber surface morphology. Figure 1d shows pure titania fibers have the formation of titania 

crystal clusters and the silica-titania50/50 fibers (Figure 3-1f) have smoother surfaces. 
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Figure 3-1. SEM images and analysis of the morphology of the electrospun nano-fiber silica-
titania meshes produced with (a,b) 6% PVP TiO2 (c,d) 10% PVP TiO2 (e,f) silica-titania50/50 
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Figure 3-2 shows the diameter distribution of calcined fibers analyzed by image J. It 

confirms the observation of SEM images, which is 6%PVP titania fibers and 10%PVP 

titania-silica50/50 fibers have thinner diameter than 10%PVP titania fibers. 

 

Figure 3-2. Histogram of diameter distribution of nano-fibers on the meshes 
Chemical analysis by XPS (Table 1) showed no N, indicating PVP was removed thoroughly 

by the heat treatment. 6% PVP and 10% PVP titania fiber meshes were generally composed 

by Ti, O and small amount of silica as well. The titania-silica50/50 fiber mesh has Ti, Si and 

O, and the ratio of Ti to Si was 1:1, consistent with the initial molar ratio of TiP to TEOS. 

Typical XRD patterns of titania fibers and titania-silica50/50 fibers with heat treatment are 

shown in Figure 3-3. Two groups of titania fibers have similar spectra, which is presented in 

Figure 3-3a. The peaks of rutile and anatase crystal structures were found in the two groups 

of pure titania fibers. For titania-silica50/50 fibers, only the peaks of anatase were found and 

the peak intensity of hybrid fibers was also weaker than that of pure titania fibers. 
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Table 3-1. Elemental composition ± standard deviation (SD) of electrospun meshes 
analyzed by XPS 
 

 
 
 
 

 

 

 
Figure 3-3. XRD spectra of (A) TiO2 meshes and (B) silica-titania50/50 meshes. Respective 
rutile (^) and anatase (*) reference peaks are marked according to JCPDS database 
 

 Ti Si O C 
6%PVP-TiO2 21.4±0.8 2.5±1.1 61.2±3.1 13.8±1.1 
10%PVP-TiO2 22.5±1.2 2.3±0.9 63.4±2.3 12.7±1.8 
10%PVP-
TiO2-SiO2 

15.3±0.4 14.6±0.9 60.1±2.1 9.9±1.3 
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In this study, pure titania and titania-silica50/50 ceramic fibrous meshes were made by 

electrospinning process and MSCs response on titania-silica fibers were evaluated. Factors 

which can influence the fiber diameter and fiber morphology of electrospun nanofibers were 

discussed in previous studies [1]. The concentration of starting polymer solution is the most 

commonly used method to adjust the electrospun fiber diameter. Generally, increasing 

polymer concentration is one of the major methods to increase electrospun fiber diameter [2]. 

For the pure ceramic electrospun fibers, which need heat treatment to remove the polymer 

component, the sol-gel content and calcination temperature can also contribute to fiber 

morphology [3]. When silica is added into the sol-gel system, even with the same 

concentration of starting polymer and same gel content, the fiber diameter is thinner than 

pure titania fibers. In addition, the additive of silica had influence on fiber surface 

morphology, too. The surface of titania-silica fiber is smoother than that of pure titania fiber. 

This result is further supported by XRD spectrum, which shows silica-titania has lower 

degree of crystallization under the same calcination temperature. After heating up to 700℃ 

for 3h, two groups of pure titania fibers formed rutile-anatase mixed crystals while silica-

titania50/50 fibers formed not well-crystalized anatase crystals. Similar results were studied 

by heating the mixture of silica and titania nanoparticles [4], which shows the addition of 

silica affects crystal phase transformation of titania-silica particles. XPS results with the lack 

of N support the point that PVP was removed during calcination and the substrates are 

composed of silica and titania. The small amount of silica in titania fibers may be caused by 

calcining the fiber meshes on a silicon wafer. 

3.1.3 Conclusion 

In this study, submicron scale composite fibers titania-based ceramics with various 

compositions have been prepared by electrospinning. Pure ceramic fibers were obtained by 

heat treatment at 700℃ for 3h. SEM images showed the diameter and morphology of the 
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nanofibers were influenced by starting polymer concentration and sol-composition. The 

titania and titania-silica nanofibers have the average diameter around100~300nm. The fiber 

surface morphology and crystal phase was influenced by silica content. 
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3.2 Fabrication of Electrospun Silica-titania Nanofibers with Different 

Silica Content and Evaluation of The Morphology and Osteoinductive 

Properties 

 
3.2.1 Introduction 

A promising approach used for the regeneration of bone tissue involves seeding stem cells 

along with their differentiation-promoting growth factors onto porous, three-dimensional 

scaffolds [5]. The scaffold serves as an artificial extracellular matrix (ECM), which gives the 

cultured tissue both form and shape and maintains the native tissue contours. Fibrous 

biomaterials are one of the most promising types of scaffolds for tissue engineering due to 

their high porosity, high surface to volume ratio, and most importantly, the similarity to the 

natural extracellular matrix [6, 7]. Electrospinning provides a simple and versatile method for 

producing ECM-like fibrous structures from a rich variety of materials, including polymers 

and ceramics [8-14]. The morphology and properties of the nanofibers can be 

characteristically defined by modifying the concentration of polymer solution, solvent, 

applied electric field strength, and deposition distance [15-19]. 

Ceramic scaffolds have been considered as bone graft substitutes for bone regeneration 

applications because of their excellent biocompatibility and bioactive properties. It is also 

well known that titanium is widely used for implant applications because of its good 

mechanical properties and biocompatible oxide layer, titania. Similar to titania, silica-

containing bioglass products can have beneficial osteoconductive functions. The silica-titania 

binary materials are widely studied for implant coatings [20-22], and it has been shown that 

ceramic coatings can enhance osteoblast maturation and osteo-differentiation of 

mesenchymal stem cells. In addition to the ceramic coatings, fibrous silica-titania materials 

have been fabricated and applied to various fields. [23-25] However, few studies have 
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investigated the effects of fibrous silica-titania ceramics of varying Ti:Si ratios on cell 

behavior. 

Recent research has shown electrospun titania nanofibers have osteoionductive potential and 

the response of MG63 osteoblast-like cells can be regulated by manipulating nanofiber 

diameter and micro roughness [26]. Interestingly, surface roughness is not only affected by 

the fiber diameter, but also by the degree of crystallization and morphology of the fibers. 

Previous study showed that a different content of silica in silica-titania binary materials can 

influence the crystal phase of silica-titania nanoparticles [27]. But whether the crystallization 

degree of silica-titania materials also plays a role in cell response regulation is not known. In 

this study, the contributions of silica-titania nanofiber mesh properties to mesenchymal stem 

cell (MSC) response were evaluated by fabricating silica-titania electrospun nanofibers and 

modulating crystallization degree by changing the ratio of Ti/Si. 

3.2.2. Materials and Methods 

Fabrication and Characterization of Electrospun Silica-titania Fiber Meshes 

Silica-titania nanofibrous meshes were prepared from a TiO2 –SiO2 mixed gel solution by 

hydrolyzing tetraethyl orthosilicate (TEOS) and titanium (IV) isopropoxide (TiP) in ethanol 

solution with acetic acid. The ratio of Ti/Si is shown in Table 3-1. In a typical procedure, 

0.5ml sol was mixed with 0.5ml absolute ethanol, with 0.5ml glacial acetic acid used as 

catalyst. After stirring for 10 minutes, the solution was added to 1.5ml 10% PVP absolute 

ethanol solution, followed by magnetic stirring for 30 minutes. For the electrospinning setup, 

briefly, sol-PVP mixture was loaded in a plastic syringe with a flattened nozzle. 

Electrospinning proceeded with at 8kV, a 10cm collection distance and a 0.5ml/h feeding rate. 

The electrospun fibers were collected on a flat plate. Finally, the PVP was removed 

thoroughly by heating in air at 700C for 3 hours. 
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Sample topography and cell morphology were examined by scanning electron microscopy 

(Hitachi S4800) using a 10 kV accelerating voltage. Fiber dimensions were evaluated using 

image analysis software (ImageJ, NIH software) from three samples per group; for each 

sample, three different fields of view were analyzed. Fiber diameter was evaluated from at 

least 270 fibers at 10,000X magnification.  

The chemical composition of the scaffolds was examined by energy dispersive x-ray 

spectroscopy (Hitachi S4800 SEM/EDX) of at least two different samples per group with 3 

locations per sample analyzed.  

Surface roughness of the porous silica-titania meshes was evaluated using a laser confocal 

microscope (LEXT LCM, Olympus, Center Valley, PA). All LCM analyses were performed 

over a 644µm x 644µm area using a scan height step of 30nm, 20X objective, and a cutoff 

wavelength of 100µm. Three scans of at least two different samples per group were analyzed. 

The roughness parameters determined were mean surface roughness (Ra) and peak-to-valley 

ratio (Rz).  

Additionally, crystal structure was determined by x-ray diffraction (XRD) and investigated 

by PANalytical XRD. 

Cell Culture 

MSCs were derived from the lower extremities of Wistar rats with approval of the animal 

ethics committee of Peking University Third Hospital. The adherent soft tissues of bones 

were cleaned, and epiphyses removed with scissors. The marrow was harvested by inserting a 

syringe needle (16-gauge) into each end of the bone and flushing repeatedly with phosphate 

buffered saline (PBS) supplemented with 100 U/ml penicillin and streptomycin into a 100mm 

culture dish. Cell suspension was obtained by drawing the marrow into a 20ml syringe 

through 22-gauge needles. The cells were centrifuged, counted, and seeded at a density of 

1×106 in 8ml of α-MEM (Minimal Essential Medium) with 10% fetal bovine serum (FBS), 
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100 U/ml penicillin and streptomycin per 100mm culture dish, and cultured at 37°C in a 

100% humidified atmosphere of 95% air and 5% CO2. Non-adherent cells were removed at 3 

days after seeding by changing the medium; thereafter, the medium was changed every 3 

days. After 7 days of primary culture, when cell confluence was almost 80% of the dishes, 

the cell monolayers were digested by 0.25% trypsin/1mM EDTA for 3 minutes and cells of 

the 3rd to 5th passage were used for further analysis. 

For cell culture on the fibrous meshes, MSCs were cultured in osteogenic media, containing 

Dulbecco’s modified Eagle medium (DMEM) with 10% FBS, 1% penicillin and 

streptomycin, 100nM dexamethasone, 0.2mM ascorbic acid-2-phosphate and 10nM β-

glycerol phosphate, at 37°C in 5% CO2 and 100% humidity. Cells were grown on 12-well 

polystyrene tissue culture plates with cover glass as control and three different groups of the 

silica-titania meshes, at a density of 10,000cells/cm2. MSCs were fed every 48 hours and 

harvested on day 6. Conditioned media were collected for assays and cell layers were washed 

twice with PBS, followed by two sequential incubations in 1ml of 0.25% trypsin/EDTA at 

37°C for 10 minutes each time to release the cells from their substrate. Cells were then 

centrifuged at 2000rpm for 15 minutes, resuspended in 10 mL of saline solution and counted 

with a Z1 Coulter particle counter (Beckman Coulter, Brea, CA).  

Biochemical Assays 

Alkaline phosphatase (ALP) activity as well as osteocalcin (OCN) and osteopontin (OPN) 

secretion were measured using a quantitative enzyme-linked immunosorbent assay (ELISA). 

All the experiments were conducted strictly according to the instructions of the ELISA kits 

(ADL Inc., USA). The production of ALP, OCN and OPN were determined by absorbance 

measurement, using a microplate reader (BIO-RAD 550, Bio-Rad Laboratories Inc., USA). A 

set of standard samples were used to plot the standard curve of the absorbance. The ALP 
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activity, OCN and OPN secretion of the samples were calculated using the standard curve of 

the absorbance.  

Statistical Analysis 

Data from characterization of the silica-titania meshes are presented as the mean ± one 

standard deviation (SD) of all the measurements performed on different samples. Data from 

cell experiments are presented as mean ± standard error (SE) for six independent cultures. 

Data were evaluated by analysis of variance, and significant differences between groups were 

determined using Bonferroni’s modification of the Student’s t-test. A p value below 0.05 was 

considered to indicate a statistically-significant difference. 

3.2.3 Results 

The electrospinning process with TiP and TEOS in PVP was used to make relatively circular 

white scaffolds with an average diameter of 3.5cm. After the collected meshes were heated at 

700˚C for three hours, the scaffolds became brittle and their diameter decreased to an average 

of 2.3cm. As the amount of titanium was increased, the scaffolds became more opaque. 

Figure 3-4 a-c show SEM images of silica-titania hybrid nanofibers with different content of 

silica. The electrospun silica-titania fibers meshes had similar porous structures and fibrous 

diameters under magnification of 10,000X. The results of image analysis show silica-titania 

fibers were uniformly distributed with an average diameter between 100 to 300nm after heat 

treatment. By increasing content of titania, fibers had a slight increase in diameter.  

Laser confocal microscope measurements (Table 3-1) revealed differences in the roughness 

of three groups of silica-titania meshes. The average roughness decreased as the silica content 

increased. Typical XRD patterns of silica-titania after 700ºC heat treatments were shown in 

Figure 3-5. The Ti:Si=3:7 group was amorphous, with only one broad peak around θ=22° 

corresponding to the (100) plane of amorphous phase of silica in the silica/titania composite 

fibers. This is the amorphous form of the silica crystalized phase (JCPDS 39-1425). With 
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increasing titania content, the anatase phase became more prominent. In the Ti:Si=7:3 group, 

each peak of titania was indexed and all of them were assigned to the tetragonal anatase. The 

peak values of the anatase phase were also consistent with reported values in the literature 

(JCPDS 21-1272). Chemical analysis by EDX (Table 3-1) show the fiber meshes containing 

Ti, Si and O elements, while N is not observed, indicating PVP was removed thoroughly by 

the heat treatment. Three groups of fiber meshes have molar ratios of Ti to Si of about 2:1, 

1:1, 1:2, consisting with the initial molar ratio of TiP to TEOS. 

 



www.manaraa.com

 

60 
 

 

Figure 3-4. SEM images and analysis of the morphology of the electrospun nano-fiber silica-
titania meshes produced with (a) Ti:Si=3:7 (b) Ti:Si=1:1 (c) Ti:Si=7:3, (d-f) histogram 
reveals thinner nano-fibers on the meshes with higher silica content compared to the meshes 
with lower silica content. The scale bar is 2µm 
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The cells of all the three mesh groups grew throughout the surfaces with similar morphology 

(Figure 3-6A showed the representative image of cell morphology). Cell number on all mesh 

groups was lower than that on glass. There was no difference between the Ti:Si=3:7 and the 

Ti:Si=1:1, while the Ti:Si=7:3 group had statistically lower cell numbers than the Ti:Si=3:7 

group (Figure 3-6Ba). ALP activity was affected in the opposite way, with cells on the 

Ti:Si=7:3 group having the highest level of ALP enzymatic activity (Figure 3-6Bb). OCN 

levels were affected in a similar way to ALP activity. The Ti:Si=7:3 group had higher OCN 

levels when compared to the Ti:Si=3:7 and the Ti:Si=1:1 groups (Figure 3-6Bc). OPN levels 

were higher on the groups with higher Ti content, and OPN production on all mesh groups 

was significantly higher than the control group (Figure 3-6Bd). 

 

Table 3-1. Elemental Composition and Surface Roughness ± standard deviation (SD) of 
titania-silica meshes  
 Elemental Composition Surface Roughness 

Ti Si O C Sa(µm) Sz(µm) 
Ti:Si=3:7 14.38±1.26 27.22±2.33 56.38±1.02 2.02±0.99 0.50±0.01 14.79±1.82
Ti:Si=1:1 

 

17.82±2.02 16.63±3.01 60.08±1.18 3.03±1.37 0.53±0.01 17.13±2.51
Ti:Si=7:3 

 

26.42±3.56 14.08±2.27 58.70±2.01 0.99±0.52 0.77±0.02 25.64±3.08
 
Roughness of glass cover control: Sa= 0.35±0.01µm, Sz= 6.33±1.22µm 
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Figure 3-5. XRD spectra of three groups of nano-fiber meshes, and respective silica and 
anatase reference peaks (JCPDS database). 
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Figure 3-6. (A) Confocal Microscope images of the morphology of MSCs cultured on the 
nano-fiber silica-titania meshes. (B) Effects of structural properties of electrospun nano-fiber 
silica-titania meshes on MSCs osteogenic differentiation. (a) cell number, (b) ALP specific 
activity, (c) OCN, and (d) OPNlevels were measured. Data represented are the mean ± SE of 
six independent samples. * refers to a statistically-significant p value below 0.05 vs. control; 
^ refers to a statistically-significant p value below 0.05 vs. Ti:Si=3:7; $ refers to a 
statistically-significant p value below 0.05 vs. Ti:Si=1:1 
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3.2.4 Discussion 

In this study we created silica-titania hybrid meshes with different chemical compositions and 

crystal structures, which resulted in different surface roughness and nano-fiber diameter 

distribution. Factors which affect the morphology of inorganic electrospun nanofibers were 

shown by previous studies, including the concentration of polymer solution [27], the 

calcination temperature [38], the sol-gel content in polymer solution [29], and the ratio of the 

sol composition [30]. The image analysis of SEM images showed different fiber diameter 

distribution of three groups of silica-titania meshes. The titania content was directly related to 

the fiber diameter when PVP concentration is maintained. The thicker fiber diameter may be 

attributed to higher crystallization degree, which is supported by the XRD spectrum. The 

XRD spectrum showed that the Ti:Si=3:7 fibers were not well-crystallized and were 

composed mostly of amorphous silica and titania. With the increasing content of titania, 

under the same calcination temperature, a peak of crystallized anatase titania started to appear. 

In the Ti:Si=7:3 group, the anatase titania crystals were much better formed than in the 

Ti:Si=1:1 group. LCM measurements confirmed the difference in roughness among the three 

groups of meshes, where the Ti:Si=7:3 group was comparatively rougher than the other two 

groups. These results support previous observations that the surface roughness is affected by 

the fiber diameter distribution [26]. The EDX results showing the lack of N support the 

hypothesis that PVP was removed during calcination and the substrates were composed of 

silica and titania. Our results are in agreement with other studies on similar meshes made 

with 7% PVP after calcination at 700°C for 2 hours which have also found no additional 

weight loss measured by thermogravimetric analysis [31]. Cell morphology was found 

similar among the three groups of meshes, while cell number on the meshes was affected by 

the samples. All three groups of meshes had lower cell numbers than the glass control. 

However, differentiation of MSCs was stimulated compared to cultures on cover glass. 
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Alkaline phosphatase specific activity, which is an early marker of osteogenic differentiation, 

was significantly higher in the Ti:Si=1:1 and the Ti:Si=7:3 group when compared to the glass 

control. Osteocalcin, a late differentiation marker, had a similar trend with ALP activity, 

suggesting that MSCs were able to sense the different nanofibers, and thus, differentiation 

was enhanced on these samples. In addition, osteopontin, a highly phosphorylated 

sialoprotein that is a prominent component of the mineralized extracellular matrices of bones 

and teeth, also exhibited higher production on the electrospun substrates. Previous studies 

have shown that the surface roughness and morphology of substrates are considered to be 

modulators of cellular behavior. Many studies evaluating rough Ti/TiO2 surfaces have 

reported the decreasing effect of surface roughness on cell number while promoting MSC 

differentiation toward osteoblasts [32-34]. These studies showed enhanced differentiation as 

evidenced by higher levels of alkaline phosphatase specific activity and osteocalcin compared 

to smooth surfaces using MG63s [34] and hMSCs [35]. In addition, three groups of 

electrospun substrates have variations in crystallinity, which has also been reported as a 

factor influencing cellular response. Studies on polymer crystallization [36] and bioglass 

crystallization [37] showed that crystallization degree can influence the surface nanotexture 

and cell response. Nevertheless, the results of those studies are inconsistent, and sometimes 

even contradictory. It has been shown that amorphous coating of calcium phosphate enhances 

bone formation [38], while some studies found the opposite results on similar materials 

[37,39]. In our study, higher crystallization of silica-titania binary materials enhanced MSC 

differentiation towards osteoblasts. Besides the differences in morphology, the substrates also 

have variations in chemical composition. Three groups of electrospun substrates all have 

elemental composition of Ti, Si and O, only with different Ti:Si ratios. According to the 

results, we found titania content was considered as an advantage for the cellular response. 

These results, together with the cell number, ALP, and OCN data suggest that surface 



www.manaraa.com

 

66 
 

roughness combined with the degree of crystallization and titania content of TiO2-SiO2 

meshes can synergistically drive the osteogenic differentiation process of MSCs.  

3.2.5 Conclusion 

In summary, we have evaluated the effect of silica content on the crystal phase and fiber 

diameter of silica-titania nanofiber meshes and the resulting osteoinductive effects of the 

meshes on MSCs. Factors of cell response such as cell number, differentiation, and local 

factor production were examined. The surface roughness, fiber diameter, and crystal phase of 

the meshes could be varied by only changing the ratio of sol composition. All silica-titania 

mesh groups supported MSC viability, as the cells grew throughout the entire surface. The 

silica-titania fibrous meshes enhanced the MSC osteogenic differentiation, as all 

experimental groups had higher levels of osteogenic differentiation markers when compared 

to the glass control. Cell morphology was similar in all three groups, while differentiation 

markers ALP, OCN, and the local factor OPN were all expressed at higher levels on the 

Ti:Si=7:3 group. These results indicate that cell response is sensitive to silica-titania 

substrates. In conclusion, this work demonstrates the potential of applying inorganic scaffolds 

with different physical parameters to drive cell differentiation and create an osteogenic 

environment for bone tissue engineering. 
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3.3 Effect of Structural Properties of Electrospun TiO2 Nano-fibrous 

Meshes on their Osteogenic Potential 

3.3.1 Introduction 

The decade from 2001 to 2011 has been termed the “bone and joint decade”, because it has 

been recognized that musculoskeletal injuries are the most reported health condition in the 

United States (US), with an associated cost close to 8% of the US gross domestic product in 

lost wages and healthcare related costs [40]. More than 25% of musculoskeletal injuries 

involve bone fractures, with many of these fractures not being able to heal by themselves, 

thus requiring some type of bone void filler that can promote bone regeneration and reduce 

healing time for the patient. With an aging population in developed countries and statistics 

showing, for example, that 1 in every 2 women over 50 years old will suffer an osteoporotic 

bone fracture [41], there is a pressing need to find reliable bone repair materials. 

Tissue engineering offers a promising approach for repair and regeneration of damaged 

human tissue by mimicking the extracellular environment and taking advantage of the natural 

cues cells use to perform their role. A common methodology for bone tissue engineering is 

the fabrication of three-dimensional (3-D) porous scaffolds, which allow cells to invade the 

construct in vitro or in vivo and more closely mimic the native environment [42,43]. There 

are several methods to prepare porous scaffolds, such as freeze-drying and salt-leaching 

methods for polymer scaffolds [44], and replica methods used in ceramics [42,45]. Although 

discovered over 100 years ago [46], electrospinning has gained popularity recently as a 

simple and versatile method to produce fibrous structures from synthetic and natural 

polymers with nano- to micro-scale dimensions [46,47].  

The electrospinning process has been extensively applied to create nano-fibrous scaffolds for 

cardiovascular [48], urologic [49] and bone tissue engineering applications [50], among 

others, using synthetic organic polymers such as poly(epsilon-caprolactone) (PCL)[51] and 
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poly(lactide-co-glycolide) (PLGA) [52]. Natural polymers such as collagen [53] and silk 

fibroin [54] have also been used in the electrospinning setup. Electrospun scaffolds have also 

been made using a composite of synthetic and natural polymers to take advantage of the 

mechanical properties of the former and the biological performance of the latter [55, 56]. 

These organic polymers can provide surfaces for cell attachment and growth, but it is often 

necessary to functionalize them, specifically for bone applications, with osteogenic molecules, 

such as hydroxyapatite (HA) [50] and growth factors like bone morphogenic proteins (BMP) 

[57] to promote cell differentiation.  

Studies using solid substrate surfaces show that cell differentiation is sensitive to micro-scale 

and nano-scale topography [58-62]. When osteoblasts or mesenchymal stem cells (MSCs) are 

cultured on titanium substrates, which have an inherent TiO2 passive oxide layer on the 

surface, they exhibit enhanced osteoblastic differentiation, particularly if the surface has both 

micro-scale and nano-scale features [63-65]. Whether surface structure also plays a role when 

cells are growing on nano-fibrous meshes is not known. The purpose of this study was to 

assess the contributions of nano-fiber dimensions and micro-scale pattern on cell response. 

To do this, pure TiO2 nano-fibrous meshes were fabricated using electrospinning to have 

different surface micro-roughness and nano-fiber diameters. 

3.3.2 Materials and Methods 

Preparation of TiO2 Scaffold  

Titania nano-fibrous meshes were prepared from a TiO2 gel solution prepared by hydrolysis 

of titanium(IV) isopropoxide (TiP) in poly(vinyl pyrrolidone) (PVP, Mw ≈ 300 000) and 

acetic acid. Initially, 0.5 mL of TiP was mixed with 0.5 mL ethanol, with 0.5 mL acetic acid 

used as catalyst. After stirring for 10 minutes, the solution was added to 1.5 mL of 6% PVP 

or 10% PVP in ethanol solution, and magnetically stirred for 30 minutes. To produce 

electrospun nano-fiber meshes, 1 mL of such hybrid solution was loaded into a plastic 
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syringe with a blunt-ended stainless steel needle. The nano-fibers were spun using a feeding 

rate of 0.5 mL/h, a collection distance of 10 cm, and an applied voltage of 8 kV. To create a 

micro-scale pattern, the electrospun fibers were collected on a cross-hatched bronze net to 

imprint a pattern on the side of the mesh in contact with the collector. The PVP was removed 

from the fibers by heating in air at 700 C for 3 hours. 

Characterization of TiO2 Scaffolds 

Sample topography and cell morphology were examined by scanning electron microscopy 

(Ultra 60 FEG-SEM, Carl Zeiss SMT Ltd., Cambridge, UK) using a 5 kV accelerating 

voltage and 30 µm aperture. Fiber dimensions and pore sizes were evaluated using image 

analysis software (ImageJ, NIH software) from three images of at least two different samples. 

The chemical composition of the scaffolds was examined by energy dispersive x-ray 

spectroscopy (INCA EDX, Thermo Fisher Scientific, West Palm Beach, FL), with two 

different scaffolds per group analyzed in at least three different sites. Surface roughness of 

the porous TiO2 meshes was evaluated using a laser confocal microscope (Lext LCM, 

Olympus, Center Valley, PA). LCM analyses were performed over a 644 µm x 644 µm area 

using a scan height step of 50 nm, a 20X objective, and a cutoff wavelength of 100 µm. Three 

scans each of at least two different samples per group were analyzed. The roughness 

parameters determined were mean surface roughness (Sa) and peak-to-valley height (Sz), and 

topographical images were also collected at the 20X magnification. Additionally, crystal 

structure x-ray diffraction (XRD) was investigated using 1.8 kW Cu Kα radiation, a 1° 

parallel plate collimator, a ¼ divergence slit, and a 0.04 rad soller slit (X‘Pert PRO Alpha-1 

diffractometer, PANalytical, Almelo, The Netherlands). Two samples per group were 

analyzed.  

Cell Culture  

MG63 cells (American Type Culture Collection, Rockville, MD) were cultured in Dulbecco’s 
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Modification of Eagle’s Medium (DMEM, cellgro® by Mediatech, Inc., Manassas, VA), 

containing 10% fetal bovine serum (Gibco, Carlsbad, CA) and 1% penicillin–streptomycin 

(Gibco), at 37°C in 5% CO2 and 100% humidity. The MG63 cell line was originally derived 

from a human osteosarcoma and has been shown to exhibit many characteristics of pre-

mature osteoblasts, making it an attractive model for in vitro studies [85-87]. Cells were 

grown on 24-well plate tissue culture polystyrene (TCPS) using a seeding density of 20,000 

cells/well. Alternatively, cells were seeded onto two different formulations of the TiO2 

meshes (6% and 10% PVP), both on their flat and patterned sides. The meshes were slightly 

large to fit in a 24-well plate, so larger well-plates had to be used to avoid damage. Meshes 

were initially seeded in an untreated 6-well plate using a volume of 150 L containing 20,000 

cells to cover just the surface of the sample, and incubated for 4 hours to allow for initial cell 

attachment. Next, each well was brought up to a final volume of 2 mL and incubated for an 

additional 20 hours. After the first 24 hours, TiO2 meshes were transferred to an untreated 12-

well plate containing 1 mL of medium in each well. MG63 cells were fed every 48 hours 

until confluent on TCPS. Cells in all wells were then incubated with fresh media for 24 hours 

and harvested. Conditioned media were collected as described below. Cell layers were 

washed twice with DMEM, followed by two sequential incubations in 500 µL of 0.25% 

trypsin-EDTA (Gibco) for 10 minutes at 37°C to ensure all cells were released from their 

substrate. Cells were then centrifuged at 2000 rpm for 15 minutes, resuspended in 10 mL of 

saline solution and counted with a Z1 Coulter particle counter (Beckman Coulter, Brea, CA). 

Cells were centrifuged again at 2000 rpm for 15 minutes, the supernatant was decanted, and 

the cell pellets were resuspended in 500 µL of 0.05% Triton-X-100. Cells were lysed by 

sonication.  

Biochemical Assays  
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Cell differentiation was evaluated as a function of alkaline phosphatase specific activity as an 

early differentiation marker, and osteocalcin content in the conditioned media as a late 

differentiation marker, as previously described [61]. Alkaline phosphatase specific activity 

was assayed as the release of p-nitrophenol from p-nitrophenylphosphate at pH 10.2  [88, 89] 

and values were normalized to the protein content, which was detected as colorimetric 

cuprous cations in a bicinchoninic reaction (BCA Protein Assay Kit, Pierce Biotechnology 

Inc., Rockford, IL, USA) at 570 nm (Microplate reader, BioRad Laboratories Inc., Hercules, 

CA, USA) [90]. Osteocalcin levels in the conditioned media were measured with a 

commercially available radioimmunoassay kit (Human Osteocalcin RIA Kit, Biomedical 

Technologies, Stoughton, MA) using a LS1500 gamma counter (Beckman Coulter, Brea, CA) 

as described previously [91]. The conditioned media were also assayed for protein levels of 

growth factors and cytokines, as described previously [92, 93]. Osteoprotegerin (OPG), a 

cytokine that works as a decoy receptor for receptor activator for nuclear factor B ligand 

(RANKL) to inhibit osteoclastogenesis, was measured using an enzyme-linked 

immunosorbent assay (ELISA) kit (DY805 Osteoprotegerin DuoSet, R&D Systems, 

Minneapolis, MN). Vascular endothelial growth factor (VEGF), a growth factor involved in 

vasculogenesis and angiogenesis, was also measured using an enzyme-linked immunosorbent 

assay (ELISA) kit (DY293B VEGF DuoSet, R&D Systems). 

3.3.3 Results 

The process of electrospinning using the Ti (IV) isopropoxide and PVP mixture produced 

flexible, roughly-circular white meshes with an average diameter of 17 mm and less than 1 

mm in thickness. After calcination at 700 °C for 3 hours, the meshes shrunk to an average 

diameter of 15 mm and became brittle. Laser confocal micrisopy (LCM) images (Fig. 3-7) 

showed topographical differences between the two sides of the 6% PVP (Fig. 3-7 a, b) and 

10% PVP (Fig. 3-7 c, d) TiO2 meshes. The surface of the meshes that was exposed to the 
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electrospinning setup was relatively flat, with fibers aligned randomly throughout the surface. 

In contrast, the surface of the mesh that was in contact with the cross-hatched bronze net used 

to collect the fibers retained the pattern stamped by the net, with bunches of aligned fibers 

forming ridges ranging from 13 to 26 m in height. SEM images (Fig. 3-8 a-d) and image 

analysis (Fig. 3-8 e, f) revealed that the meshes were porous, with a similar average pore size 

of 1.44 ± 0.89 m for 6% PVP scaffolds and 1.76 ± 1.00 m for 10% PVP scaffolds. 

However, the higher magnification SEM images (Fig. 3-8 b, d) showed that changing the 

preparation from 6% to 10% PVP had an effect on the fiber diameter size, with the former 

having an average diameter of 184 ± 39 nm, and the latter a significantly larger average 

diameter of 343 ± 98 nm. 
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Figure 3-7. LCM images of both flat and patterned sides of the TiO2 meshes, made with 6% 
and 10% PVP. The nanofibers on the flat side of the meshes are randomly aligned, whereas 
the patterned side of the meshes has a clear cross-hatch pattern, with ridges of aligned 
nanofibers. 
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Figure 3-8. SEM images and analysis of the morphology of the electrospun nanofiber TiO2 
meshes produced with (a,b) 6% or (c, d) 10% PVP. (e) Histograms at low magnification show 
similar pore sizes for both mesh formulations. However, (f) histograms at higher 
magnification reveal thinner nanofibers on the 6% PVP meshes compared to the 10% PVP. 
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LCM measurements (Table 3-2) revealed that the roughness of both 6% and 10% scaffolds 

was similar with their patterned side significantly rougher compared to the flat side. The X-

ray diffraction (XRD) spectrum (Figure 3-9) of the nano-fibrous TiO2 meshes presented 

main peaks for the rutile crystal structure. Chemical analysis by EDX (Table 3-3) showed 

that the initial PVP concentrations did not affect the final chemical composition after 

calcination, which included Ti and O as the major components with a molar ratio close to 1:2 

consistent with the TiO2 molecular formula. Small traces of Si and Ca were detected and no 

C from the PVP was found in the EDX spectra of all the samples. 
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Table 3-2. Surface roughness of TiO2 meshes measured by LCM. 

 

 

 

Table 3-3. Elemental composition of TiO2 meshes analyzed by EDX. 

 

 

 

Table 3-4. Surface elemental composition of TiO2 meshes analyzed by XPS. 
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Figure 3-9. XRD spectra of 6% and 10% TiO2 nanofiber meshes. 
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Cell morphology was similar on flat (Fig. 3-10) and patterned (Fig. 3-11) sides of the TiO2 

meshes, regardless of the percent of PVP used during processing. The cells grew throughout 

the surface with elongated morphology and in some cases seemed to grow along some of the 

ridges of the patterned side and into the largest pores of both of the mesh. The response of the 

cells was sensitive to the micro- and nano-structure of the meshes (Fig. 3-12). The number of 

cells on the patterned P6% and P10% groups were similar, but lower than the cell number of 

flat groups (Fig. 3-12 a). Cell numbers of all TiO2 groups were lower than tissue culture 

polystyrene (TCPS). Alkaline phosphatase was affected in a similar manner, with cells on the 

patterned side of the meshes having lower levels of enzyme activity than cells on the flat side, 

regardless of the PVP preparation (Fig. 3-12 b). Osteocalcin levels were higher on the P10% 

group when compared to the F10% and P6% groups (Fig. 3-12 c). Osteocalcin levels were 

also higher on all TiO2 meshes compared to TCPS. Osteoprotegerin (OPG) production was 

sensitive to both the micro-scale pattern of the surface and the size of the nano-fibers, as the 

levels were higher on the F10% group compared to F6%, and on both P6% and P10% groups 

compared to their flat sides (Fig. 3-12 d). Vascular endothelial growth factor (VEGF) 

production was higher on P6% and P10% groups compared to TCPS, with P10% being 

significantly higher than its flat counterpart F10% (Fig. 3-12 e). 
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Figure 3-10. SEM images at different magnifications of the morphology of MG63 
osteoblast-like cells cultured on the flat side of the nanofiber TiO2 meshes. 
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Figure 3-11. SEM images at different magnifications of the morphology of MG63 
osteoblast-like cells cultured on the patterned side of the nanofiber TiO2 meshes. 
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Figure 3-12. Effects of structural properties of electrospun nanofiber TiO2 meshes on 
osteoblast maturation. MG63 cells were plated on the flat or patterned side of both 6% and 
10% PVP TiO2 meshes and grown to confluence. At confluence, (a) cell number, (b) ALP 
specific activity, (c) OCN, (d) OPG and (e) VEGF levels were measured. Data represented 
are the mean ± SE of six independent samples. ⁄Statistically significant p value below 0.05 vs. 
all TiO2 groups; ^statistically significant p value below 0.05 vs. TCPS; #statistically 
significant p value below 0.05 vs. flat side of the same formulation; $statistically significant p 
value below 0.05 vs. 6% PVP of the same side. 
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3.3.4 Discussion 

In this study the electrospinning process was used to create pure TiO2 meshes that had the 

same chemical composition and crystal structure, but different surface roughness and nano-

fiber diameter. Differences in surface roughness were achieved by contrasting the side of 

each mesh that was exposed to the injection needle with the side that was in contact with the 

patterned bronze collector resulting in a cross-hatch pattern.  

LCM measurements confirmed the difference in roughness between the two sides of the 

meshes, and showed that the patterned side was comparatively rougher than the flat side. 

These results using inorganic fiber meshes support previous observations showing that 

different collector patterns affect the topography and fiber alignment of polymeric 

electrospun meshes [66, 67].  

By changing the PVP concentration of the starting solution from 6% to 10% PVP, the 

samples ended up with different average nano-fiber diameters. These results are consistent 

with previous studies on electrospun titania meshes [68-71], which showed that properties 

such as fiber diameter and pore size are dependent on electrospinning parameters such as 

PVP and titanium precursor concentrations, electric field strength, and solution feeding rate. 

Interestingly, these changes in surface roughness and fiber diameter were achieved without 

affecting the chemistry or the crystal structure of the substrates, thus emphasizing the effect 

of the structural variables of interest on cell response. In addition, the lack of C in the EDX 

spectra confirms that all PVP was removed during calcination and the substrates are, indeed, 

mainly composed of TiO2.   

Cell morphology was not sensitive to differences in micro-scale structure or nano-fiber 

diameter. However, cultures grew throughout the entire surface and interacted very closely 

with the nano-fibers. Even on the samples imprinted with the cross-hatch pattern, no major 

effects on cell morphology were observed, although a few cells did align with some of the 
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ridges. Previous studies on electrospun polymeric scaffolds reported preferential attachment 

of cells along patterned and aligned nano-fibers during early culture time points, but not after 

cells reach a larger percentage of confluence [72-80]. It is possible that during earlier time 

points in our study, cells alignment with the ridges of the cross-hatch pattern might have been 

more evident, although this was not evaluated in this study. 

In the present study, the average pore size of the meshes was smaller than the size of the cells, 

so it was not possible for them to be incorporated into the mesh. However, cells still tried to 

migrate within the largest pores, as evidenced by single nano-fibers covering parts of their 

cell extensions. Previously, non-woven electrospun scaffolds seeded with human MSCs have 

been shown to support proliferation with even distribution inside the scaffolds after culture in 

a dynamic flow bioreactor, and to promote neo-vascularization within the scaffolds in a nude 

mouse subcutaneous model [81-87]. Conversely, it has been recently reported that most 

conventional electrospinning collecting systems result in tightly packed layers of nano-fibers 

that hinder cell infiltration [88]. The same group developed a new “focused, low-density, 

uncompressed nanofiber” (FLUF) collection system that results in loosely packed scaffolds 

with large pores that allow improved infiltration of cells.  

Cell number on the TiO2 meshes was affected by the surface roughness of the samples and 

not necessarily by the size of the nano-fibers. The rough side of both 6% and 10% PVP 

meshes had lower cell numbers than their smooth side. The effect of surface roughness on 

cell number has been previously reported by our lab and others for Ti/TiO2 surfaces that 

promote osteoblast differentiation [72, 89-91]. The concept of decreased cell number on 

rougher surfaces that enhance osteoblast maturation has been explained as a transcriptionally 

regulated transition between cell proliferation and differentiation [92, 93]. In contrast, other 

groups have found higher cell numbers with an increase in nano-roughness [94], micro-

roughness [95, 96] or a combination of both [73]. Our results are also in agreement with other 
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studies on electrospun polymeric scaffolds, which have found no effects on osteoblast 

proliferation due to nano-fiber alignment [79, 84] nor nano-fiber diameter [97]. 

Maturation of osteoblasts was controlled by a combination of surface roughness and fiber 

diameter on the TiO2 meshes, or in other words a combination of micro-roughness and nano-

topography created by the nano-fibers. Alkaline phosphatase specific activity, which is a 

marker of osteoblast differentiation expressed during early stages, was lower on the rough 

side of the 6% and 10% TiO2 meshes and higher on the flat side of the 6% PVP meshes 

compared to TCPS. Osteocalcin, a late differentiation marker, was significantly higher on the 

rough side of 10% PVP meshes compared to all other groups, suggesting that osteoblast were 

able to sense the combination of micro- and nano-topography and, thus, differentiation was 

enhanced on these samples. Osteocalcin production was also dependent on the chemistry of 

the substrate, as levels on all TiO2 meshes were higher than on TCPS. Many studies 

evaluating rough Ti/TiO2 surfaces have reported enhanced differentiation as evidenced by 

higher levels of alkaline phosphatase specific activity and osteocalcin compared to smooth 

surfaces using MG63s [98] and hMSCs [61]. Our results are in agreement with other studies 

that have also found lower levels of alkaline phosphatase specific activity with associated 

higher production of osteocalcin on micro-rough surfaces [98, 99] or combined micro- and 

nano-rough surfaces that mimic bone structural hierarchy [68], suggesting a more mature 

osteoblastic phenotype. These results are attributed to the biphasic profile of alkaline 

phosphatase specific activity, with an earlier peak and subsequent downregulation in 

production that precedes the step-like upregulation of osteocalcin once the osteoblasts reach a 

certain stage of maturity [93]. Only few studies have looked at these differentiation markers 

on polymeric electrospun meshes, with no clear effect from nano-fiber alignment [84] or 

diameter [97]. 
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In addition, local factors OPG and VEGF were also sensitive to the combination of surface 

roughness and nano-fiber diameter. OPG production was higher on the smooth side of the 

10% meshes compared to the 6% meshes, favoring the larger nano-fiber diameter on flat 

substrates. However, the highest levels of OPG were found on the rough side of the 6% and 

10% meshes compared to their smooth side. VEGF production had the highest levels on the 

rough side of both meshes compared to TCPS, with the 10% PVP mesh also having higher 

levels compared to its smooth counterpart. Overall, our results show enhanced osteoblast 

maturation and local factor production on rougher TiO2 porous meshes with larger nano-fiber 

diameter of around 340 nm (i.e., 10% PVP TiO2 meshes). These results together with the cell 

number, ALP and OCN data suggest that surface roughness of porous TiO2 substrates in 

combination with the nano-topography created by the fibers can drive the maturation process 

of osteoblasts on these surfaces. 

3.3.5 Conclusions 

In this study, we have evaluated the effect of porous and nano-fibrous TiO2 meshes on the 

proliferation, differentiation, and local factor production of osteoblasts. The surface 

roughness and fiber diameter of the meshes could be varied without affecting their chemistry 

or crystal structure, emphasizing the effect of the structural parameters on cell response. The 

different TiO2 mesh groups supported osteoblast viability, as the cells grew throughout the 

entire surfaces. The TiO2 chemistry seemed to enhance osteoblast maturation, as all 

experimental groups had decreased proliferation and higher levels of differentiation markers 

compared to TCPS. Although cell morphology was similar on all TiO2 mesh groups, cell 

response was sensitive to the substrate. Moreover, proliferation, differentiation and local 

factor production were regulated by different structural aspects of the meshes. Osteoblast 

proliferation was controlled by surface micro-roughness, whereas differentiation and local 

factor production were affected by both surface micro-scale pattern and nano-fiber diameter, 
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indicating that osteoblasts are sensitive to both the micro-roughness and the nano-topography 

created by the TiO2 nano-fibers. Finally, the combination of micro-roughness with the nano-

topography created by the larger nano-fibers enhanced osteoblast differentiation and local 

factor production, indicating that there might be a lower-limit threshold in the size of the 

nano-fibers that could be sensed by the osteoblasts to differentiate and generate an osteogenic 

environment. In conclusion, inorganic scaffold structural cues can be used to drive cell 

differentiation and create an osteogenic environment without the use of exogenous factors 

and, thus, structural parameters should be carefully considered when designing a scaffold for 

tissue engineering applications. 
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Chapter 4. Three-dimensional titanium scaffolds promote 
osteoblast maturation and integrin α2β1 mediated mechanism 

4.1 Introduction 

Titanium and its alloys are the most commonly used materials for implants in dental and 

orthopedic applications because of their mechanical properties (e.g., weight-to-strength ratio) 

and good biological performance [1, 2, 3]. Hierarchy surface roughness of metallic implants, 

such as those made from titanium, play an important role in osseointegration. 

Osseointegration of implants is critical for successful bone regeneration and healing in dental 

and orthopedic applications [4]. To enhance bone integration, micro-roughness has become a 

standard feature required for advanced osteogenic responses [5-7]. Nano-featured titanium 

surfaces also increase ALP activity and upregulate gene expression of the bone-related 

proteins [8, 9]. Compared to surface modification, 3D porous scaffolds allow for bone to 

grow into the component providing enhanced fixation and produces a system which enables 

stresses to be transferred from the implant to the bone [10]. 

Numerous investigations into porous materials started in 1930’s [11, 12], including polymers, 

ceramics and metals [13, 14].  For bone tissue engineering, porous ceramics scaffolds, such 

as hydroxyapatite and calcium phosphatate were well studied and proven to have great 

biocompatibilities and bioactivities [15, 16]. However, the disadvantages of ceramics are also 

obvious. The poor mechanical properties limit the applications of porous ceramic materials 

for load bearing implants, so metals are still preferred for orthopedic load bearing 

applications. Galante et al. [17] pioneered the development of fiber-metal leading to its 

clinical use as a porous coating in hip and knee arthroplasty. In the last twenty years, a 

variety of porous coatings and materials have also been used to obtain biological fixation of 

porous implants and bone. The most common metallic materials include sintered Ti and 

beads, diffusion-bonded Ti, fiber metal and plasma-sprayed Ti, among others [7, 18, 19]. 
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Recently, a new series of highly porous metals have been developed and applied in 

orthopedic surgery, such as porous tantalum and titanium foams made by various techniques 

[10, 20].  

Clinical and histological evidence from retrieved implants clearly demonstrate that these 

porous surfaces enhance bone tissue in-growth and are effective in supplementing the 

stability of the implants by biological fixation [14, 21-23]. Boblyn et al. [24] used highly 

porous tantalum as implants and characterized the mechanical properties and bone ingrowth 

in dogs. The results show bone ingrowth increased from 13% at two weeks to 42~53% at 4 

weeks. V.K. Balla et al. [10] also used porous tantalum structures to study the biological 

properties in vitro. A human fetal osteoblast cell line was used for the cell viability and 

proliferation assay. Previous studies have focused on the fabrication of porous metal implants 

and the influence of these implants on pre-osteoblast cells [25]. However, the osteoblast 

responses including other differentiation marker and local growth factors production on 3D 

porous scaffold has not been clearly investigated yet, especially for the combined effect of 

3D feature with the surface roughness on osteoblasts have not been characterized. In this 

study, MG63 cells were selected as the major immature osteoblast model. MG63 cells are 

human osteosarcoma-derived osteoblast-like cells. This cell line has been well characterized 

and exhibits numerous osteoblastic traits that are typical of a comparatively immature 

osteoblast. Normal human osteoblasts were also used to confirm the results. 

Osteoblasts interact with substrate via integrin binding to extracellular matrix proteins. 

Integrin expression is also substrate sensitive [26-28]. For instance, osteoblasts express 

primarily α5β1 when grow on TCPS, but they shift to express α2β1 when grown on Ti and 

Ti6Al4V alloy. Our previous study showed that the β1 subunit and α2β1 heterodimer play 

critical roles in osteoblast-response to microscale surface structure and surface energy of Ti 

substrate [29, 30]. However, whether β1 and α2β1 integrin also contribute to osteoblast 
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maturation on 3D Ti scaffolds is not known. In this study, wild type MG63 cells and integrin 

β1/α2β1 MG63 knockdown cells were seeded on Ti surfaces and 3D Ti scaffolds, and cell 

maturation and the role of integrin β1 and α2 were investigated. 

 

4.2. Materials and Methods 

4.2.1 Fabrication and characterization of 3D Ti scaffolds 

Single orderly oriented titanium wire meshes (Xinxing Ti company, Anping, Hebei, China) 

were cut by laser cutter and the scaffolds were prepared by compressing four layers together. 

Briefly, four layers of single titanium wire meshes were placed together, pouched by 

hydraulic press using 5 tons pressure. The scaffold has the diameter of 15mm and thickness 

of 450~500µm. PT grade 2 titanium discs (Institute Straumann AG, Waldenburg Switzerland) 

were used as 2D surface control. To create the rough texture of 2D surface and 3D scaffold, 

98% sulfate acid and 60% nitrite acid (ratio 1:1) mixture was used to etch the titanium 

surface. PT discs and 3D scaffolds were placed in the acid mixture, reacting in boiling water 

bath for 45 min. After acid etching, PT discs, acid etch PT discs, 3D scaffolds, acid etched 

3D scaffolds were cleaned using standard procedure in our previous study [31]. Briefly, Ti 

disks were cleaned by sonication in 2% Micro-90 detergent (International Product 

Corporation, Burlington, NJ) in distilled, ultrapure water for 2 x 15 min followed by two 15 

min rinses in ultrapure water. Samples were rinsed 2 x 15 min in sequential ultrasonic baths 

of reagent grade acetone, isopropanol, and ethanol. After cleaning, disks were rinsed with 

ultrapure water three times for 10 min in a sonicated bath. Cleaned disks were packed in self-

sealed sterilization pouches (Cardinal Health, Dublin, OH) and autoclaved.  

Sample morphology was characterized by scanning electron microscopy (SEM, Ultra 60 

FEG-SEM, Carl Zeiss SMT Ltd., Cambridge, UK) using a 5 kV accelerating voltage and 30 

µm aperture. 
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The chemical composition of the scaffolds and discs was examined by X-ray photoelectron 

spectroscopy (XPS; Thermo K-Alpha XPS, thermo Fisher Scientific, West Palm Beach, FL). 

The instrument was equipped with a mono chromatic Al Kα X-ray source (hv=1468.6eV) and 

spectra were collected using an X-ray spot size of 100 µm and a pass energy of 200 eV, with 

1 eV increments, at 55° takeoff angle. 

3D structure and surface roughness of the scaffolds was evaluated using laser confocal 

Microscopy (LCM; Lext LCM, Olympus, Center Vally, PA). LCM analysis was performed 

over a 100µm x 100um area using a scan height step of 30n and a cutoff wavelength of 

100µm. Three scans of each sample and at least two different samples per group were 

analyzed. 

4.2.2 Cell culture 

Human Osteosarcoma-derived osteoblast-like cells (MG63) were obtained from the 

American Type Culture Collection (Rockvill, MD). MG63 cell line was a well characterized 

pre-mature osteoblast cell culture model for assessing responses to Ti surface structures [32, 

33]. The construction and selection of transfected integrin β1 silenced (shITGβ1) and integrin 

α2β1 co-silenced (shITG α2β1) MG63 cells were described in our previous studies [29, 30]. 

The stable transfected MG63 cells were stored at -80°C. In this experiment, the stored cells 

were thawed and cultured until confluence on T-75 flask before plating on the scaffolds.  

Wild type, shITG β1, shITGα2β1 MG63 cells and normal human osteoblast cells (Lonza 

Group, Ltd, US) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Cellgro by 

Mediatech, Inc., Manassas, VA) containing 10% Fetal bovine serum (Gibco, Carlsbad, CA) 

and 1% penicillin-streptomycin (Gibco) at 37℃ in 5% CO2 atmosphere and 100% humidity. 

For the control groups, cells were grown on 24-wells plate tissue culture polystyrene (TCPS) 

using a seeding density of 20,000 cells per well in 1ml full media. For the experimental 

groups, cells were seeded on PT, acid etched PT substrate, and 3D Ti, acid etched 3D Ti in 
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untreated 24-well plate of the same density as TCPS control. Cells were fed 24 hours after 

plating and every 48 hours until confluent on the TCPS. At confluence on TCPS, cells were 

fed with fresh media for 24 hours and harvested. Conditioned media were collected for 

ELISAs. Cell layers were washed twice with PBS, followed by 3 times 10 min incubation in 

500µl of 0.25% trypsin-ethylenediaminetetraacetic acid (Gibco) at 37℃ to release the cell 

from surface and scaffolds. Cell suspensions were centriguged at 2000 rpm for 15min, 

resuspended in 10ml of saline solution and counted with a Z1 Coulter particle counter 

(Beckman Coulter, Brea, CA). After counting, cell suspensions were centrifuged again at 

2000 rpm for 15 min, the cell pellets were resuspended in 500µl of 0.05% triton-X-100 and 

lysed by sonication. 

To further study the continuous proliferation and differentiation potential in long time culture, 

cells were cultured on TCPS, PT and 3D Ti scaffolds for longer period of time. When cells 

reached confluence on TCPS, the day was marked as Day 0, then the cells were continued 

culturing for 2, 6, 8, 10, 12 days. At Day 2 (Day 6~12), cells were fed with fresh media for 24 

hours and harvested using the same protocol. 

4.2.3 Biochemical assays 

Cell morphology was characterized by scanning electron microscopy (SEM, Ultra 60 FEG-

SEM, Carl Zeiss SMT Ltd., Cambridge, UK) using a 5 kV accelerating voltage and 30 µm 

aperture. 

MG63 cell maturation was evaluated by examining the alkaline phosphatase activity (ALP 

activity) and osteocalcin (OCN) content. ALP activity is an early differentiation maker of 

osteoblast, which was measured by determining p-nitrophenol (pNP) release from p-

nitrophenylphosphate (pNPP) at pH 10.2 in the cell lysate and normalized to total protein 

content (Micro BCA Protein Assay kit, Pierce Biotechnology Inc., Rockford, IL, USA). OCN 

levels were measured a radioimmunoassay kit (Human OsteocalsinRIA kit, Biomedical 
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Technologies, Stoughton, MA). Protein levels of growth factors and cytokine were also 

assayed of the conditioned media as described previously [34]. Osteoprotegerin (OPG), 

which reduces the production of osteoclasts, by inhibiting the differentiation of osteoclast 

precursors, was measured using an enzyme-linked immunosorbent assay (ELISA) kit 

(DY805 Osteoprotegerin DuoSet, R&D Systems, Minneapolis, MN). Vascular endothelial 

growth factor (VEGF), a growth factor involved in vasculogenesis, was also measured using 

an ELISA kit (DY293B, VEGF DuoSet, R&D Systems, Minneapolis, MN). Osteocalcin, 

OPG and VEGF production were further normalized by the total cell number.  

4.2.4. Statistical analysis 

Data from characterization of the Ti scaffolds are presented as the mean ± one standard 

deviation (SD) of the measurements of chemical composition and surface roughness 

performed on four different groups of samples. Data from cell experiments are presented as 

mean ± standard error (SE) for six independent cultures. All experiments were repeated at 

least twice to ensure validity of the observations and the representative results from an 

individual experiment is shown. Data were evaluated by analysis of variance, and significant 

differences between groups were determined using Bonferroni’s modification of Student’s t-

test. A p value below 0.05 was considered to indicate a statistically significant difference. 

 

4.3. Results 

4.3.1 Scaffold Preparation 

The laser-cut Ti single layers produced circular meshes with an average diameter of 15 mm 

and a thickness of 200 µm. After compressing four layers together, the scaffolds had an 

average diameter of 15 mm and thickness of 500~550µm. Laser confocal microscope (LCM) 

images showed topographical structure of 3D titanium scaffolds (Fig. 1A). The average wire 

diameter and pore side length were around 150 µm and the pores were interconnected. SEM 
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images showed the surface morphology of the titanium wire of 3D scaffolds before and after 

acid etching (Fig. 1B-1E). The roughness was quantitatively measured by LCM (Table 1). 

The result showed that after 45 min acid etching, the surface roughness increased by 200nm 

in average. 

Chemical analysis by XPS showed O and Ti as the main chemical species in all the groups. A 

small amount of Ca was detected in the 3D group, but after acid treatment, no Ca was 

detected. An increased amount of carbon contamination was also observed on both acid 

etching groups, as the percentage of carbon on the surfaces was significantly higher than non-

etched surfaces (Table 1).  

4.3.2 Cell Morphology and Proliferation 

Cell morphology on 3D scaffolds was observed at confluence on TCPS and 12 days after 

confluence. At confluence on TCPS (about 5-6 days in culture), the cells on 3D scaffolds 

have two different morphologies (Fig. 2A, 2B). Elongated morphology was observed on the 

titanium wire, while in crossing space of two (or more) wires, the cells anchored to the wires 

and formed canopy-like morphology. Similar cell morphology was observed on acid etched 

3D scaffolds (Fig. 2C, 2D). After 12 more days of culture, cells expanded across the whole 

top surface of scaffold (Fig. 2E). Cells were also observed from the bottom view of the 

scaffold (Fig. 2F). 

4.3.3 MG63 Cell and Human Osteoblast Behavior at confluence on TCPS (day 0) 

When the cells were confluent on TCPS (usually takes 5-6 days), the day was marked as day 

0. The number of cells on scaffolds was significantly lower than those on PT and acid PT 

surfaces (Fig. 3A). The production of osteo-differentiation markers, ALP activity (Fig. 3B) 

and OCN (Fig. 3C) were found increased on the 3D and acid 3D scaffold group. The local 

growth factor, OPG and VEGF production (Fig. 3D, 3E) were affected in a similar manner, 

with cells on the 3D and acid 3D scaffold having significant higher levels than the 2D 
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surfaces. The effect of surface roughness on MG63 maturation was not as obvious, but the 

increased roughness did have a positive effect on MG63 maturation, as significant higher 

ALP activity level was observed with the acid 3D group and the highest production value of 

OCN, OPG and VEGF were all obtained from the acid 3D group. Normal human osteoblasts 

were affected by the 3D structure in a similar manner: cell number was lower and ALP 

activity and OCN level were significantly higher on the 3D scaffolds compared to 2D 

scaffolds (Fig. 4A-4C) 

4.3.4 Roles of Integrin β1 and α2β1 

Figures 5A-5E shows the cellular responses of wild type MG63 and silenced integrin β1 

(shITGβ1) and α2β1 (shITGα2β1) MG63 on 3D scaffolds. All of the cells (WT, shITGβ1 and 

shITGα2β1) numbers on 3D and acid 3D scaffolds were lower than those on Ti surfaces (Fig 

5A). When compared to the wild type MG63 cells, β1 silencing increased cell number on 

rougher surfaces (acid PT) and 3D/acid 3D scaffolds, but not on PT surfaces; α2β1 silenced 

cells had the highest cell number on scaffolds in comparison to the other two cell types of the 

same groups. The effects of integrin-silencing on osteoblast differentiation were also surface 

dependent. On PT surfaces, integrin-silencing didn’t have significant effect in the production 

of all growth factors. On acid PT surfaces, ALP activities and OPG were reduced because of 

the integrin-silencing. On both 3D and acid 3D groups, both of the two differentiation 

markers, ALP activities and OCN, and local growth factors (OPG and VEGF) production in 

integrin knockdown MG63 cells were significantly lower than those of wild type MG63 cells. 

α2β1 silenced cells on 3D scaffolds had the lowest OCN, OPG, and VEGF compared to the 

wild type and β1 silenced cells. The enhanced ALP activities and VEGF production on 3D 

and acid 3D scaffolds of wild type MG63 cells were completely abolished by β1-silencing 

and OCN and OPG productions, the 3D structural effects on MG63 cells were partially 
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blocked by β1-silencing. α2β1 silencing completely blocked all the structural effect of 3D 

scaffolds. 

4.3.5 MG63 Cell behavior during time 

Cell number on the 3D scaffolds was lower in the early stage of culture time, and cell number 

continued to increase with time. In contrast, cell numbers on PT peaked after 8 days post 

confluence (Fig. 6A). Increased ALP activities were observed on 3D scaffolds in the early 

and late stage of culture. OCN production was five to eight fold higher at confluence and at 2 

days post confluence when cells numbers were lower compared to cells on PT and TCPS. 

OCN production was two to three folds higher at later time points when the cells show a high 

proliferation rate (Fig. 6B, 6C). The local growth factors OPG and VEGF were affected by 

the 3D scaffold in a similar way (Fig. 6D, 6E) 

 

Table 4-1. Elemental Composition and Surface Roughness ± standard deviation (SD) 
 Elemental Composition Surface Roughness 

Ti O C Ca Sa(µm) 
PT 18.7±6.3 49.6±8.7 31.5±4.2 - 0.43±0.02 

AcidPT 
 

16.3±6.1 41.9±7.7 42.9±5.8 - 0.63±0.02 
3D 

Acid3D 
 

19.8±6.6
18.4±5.8

52.1±9.0 
45.7±9.9 

19.6±7.8
35.2±6.4

3.0±2.2
- 

0.60±0.02 
0.83±0.03 
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Figure 4-1 LCM and SEM imagens of 3D titanium scaffolds. A: the LCM image of 3D 
scaffold, which has interconnected porous structure. B-E: the surface structure of un-etched 
(B.C) and acid-etched (D,E) titanium wire. Increased surface roughness were observed on 
acid-etched surfaces. 
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Figure 4-2. SEM images at different magnifications of the morphology of MG63 osteoblast-
like cells cultured for 6 days on the 3D scaffolds (A,B) and acid-etched 3D scaffolds (C,D) 
and for 18 days on the top surface (E) and bottom surface (F) of 3D scaffolds. 
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Figure 4-3. Effects of structural properties of 3D scaffolds combined with surface roughness 
modificationon MG63 maturation. MG63 cells were plated on the PT, acid PT, 3D and acid 
3D scaffolds and harvested at confluence on TCPS. (a) Cell number, (b) ALP specific activity, 
(c) OCN, (d) OPG, and (e) VEGF levels were measured. Data represented are the mean ± SE 
of six independent samples. * refers to a statistically-significant p value below 0.05 vs. PT; ^ 
refers to a statistically-significant p value below 0.05 vs. acid PT; $ refers to a statistically-
significant p value below 0.05 vs. 3D. 
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Figure 4-4. Effects of structural properties of 3D microstructure combinedwith surface 
roughnessmodification on normal human osteoblast maturation. Normal human 
osteoblastswere platedand harvested at confluence on TCPS. (a) Cell number, (b) ALP 
specific activity, (c) OCN, (d) OPG, and (e) VEGF levels were measured. Data represented 
are the mean ± SE of six independent samples. * refers to a  statistically-significant p value 
below 0.05 vs. PT; ^ refers to a statistically-significant p value below 0.05 vs. acid PT. 
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Figure 4-5. Role of integrin β1 and α2 on osteoblast maturation on 3D scaffolds. MG63 cells 
were plated and harvested at confluence on TCPS. (a) Cell number, (b) ALP specific activity, 
(c) OCN, (d) OPG, and (e) VEGF levels were measured. Data represented are the mean ± SE 
of six independent samples. * refers to a statistically-significant p value below 0.05 vs. PT 
among the same cell type; ^ refers to a statistically-significant p value below 0.05 vs. acid PT 
among the same cell type; # refers to a statistically-significant p value below 0.05 vs. WT 
MG63; + refers to a statistically-significant p value below 0.05 vs. shITGβ1 MG63 
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Figure 4-6. . Effects of structural properties of 3D scaffoldsonMG63 cells during culture time. 
MG63were platedand theday when cellsgetconfluence on TCPSis marked as 0. (a) Cell 
number, (b) ALP specific activity, (c) OCN, (d) OPG, and (e) VEGF levels were measured. 
Data represented are the mean ± SE of six independent samples. * refers to a statistically-
significant p value below 0.05 vs. TCPS base line; ^ refers to a statistically-significant p 
value below 0.05 vs. PT at the same time point. 
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4.4. Discussion 

In the present study, a simple 3D scaffold model with interconnected porous structure with or 

without surface roughness modification was developed to evaluate the proliferation and 

maturation of osteoblast-like MG63 cells and human osteoblasts. The role of integrin α2 and 

β1 during the maturation process was also determined. As expected, SEM images and 

confocal laser microscopy measurements confirm the roughness increased by 200nm (Sa) 

after acid etching. XPS analysis showed that the major elements of titanium discs and 

scaffolds were Ti, O and C. Trace calcium was detected on the non-etched 3D scaffolds 

might be due to the manufacture process of titanium meshes and the calcium was removed by 

acid etching confirmed the trace calcium was only on the very surface of the scaffold. Carbon 

contamination was increased by acid etching in this study. These findings are consistent with 

previous studies and can be explained by the fact that acid etching increases surface oxidation 

and roughness, which results in more carbon trapping [35]. 

The initial osteoblast growth on 3D scaffolds compared to PT surfaces was measured by cell 

number of MG63 and normal human osteoblasts. Since it is hard to directly observe cells on 

Ti discs and scaffolds, we use TCPS as observing control, and cells were normally harvested 

at confluence on TCPS. [8, 32, 34] At confluence on TCPS (about 5~6 days), there were 

much fewer cells on the scaffolds than on the surfaces. This could be attributed to the 

interconnected porous structures of the 3D scaffolds, which may let the cells penetrate 

through the pores without attaching to the wire surfaces. When the initial attaching density is 

low, there are also a low number of cell-cell contacts to form colonies. This could result in 

low proliferation rate [36]. Although cell counts were smaller on 3D scaffolds, the maturation 

of MG63 and human osteoblasts were promoted. This finding is consistent with the previous 

theory that the proliferation and differentiation are negatively correlated. [8, 37, 38] The 

surface roughness effects were not as significant as the 3D structural effects. Previous studies 
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showed titanium discs with micro-rough surfaces can enhance osteoblast maturation and 

osseointegration [32, 39]. Normally, the rough surfaces were made by sand blasting and HF 

etching [40], with 1~2µm average roughness increase compared to the smooth surfaces. In 

this study, the acid etching process increased surface roughness by only 200nm, which is 

moderate in comparison to the rough Ti surfaces in previous study. The cell responses 

showed that a 200nm increase of roughness could not make a significant increase in OCN, 

OPG and VEGF production. However, we can still observe significantly higher ALP 

activities. The greatest amount of local growth factor appeared in the acid 3D group too. This 

fact indicates that micro-roughness in 3D environment has an additive effect on osteoblast 

maturation. 

Previously, we have shown that α2 and β1 are required for osteoblast differentiation on 

titanium surfaces with micro-roughness [29, 30]. In addition, the role of the different 

heterodimer α5β1 and α2β1 in the osteoblast maturation process was also studied in our 

group, and we found that the α2β1 heterodimer, which is the collagen binding receptor, plays 

a critical role in osteoblast maturation on rough titanium surfaces. In the present study we 

confirmed the role of integrins in osteoblast response to 3D scaffolds.  Both of the 

differentiation markers ALP activities and OCN, as well as the local growth factor OPG and 

VEGF, descended in both of the integrin silencing groups. Moreover, the structural effects of 

the 3D scaffolds, which induce an enhancement of osteoblast maturation, were partially 

blocked by β1 silencing and totally blocked by α2β1-silencing. The results showed that 

without the α2β1 heterodimer signaling, MG63 cells exhibited more proliferation phenotype 

than differentiation. This is the first time we find integrin α2β1 also plays an important role in 

the osteoblast maturation on 3D titanium scaffolds. 

In this study we have found that initial proliferation on 3D scaffolds was low, which can be 

caused by fewer attachments when the cells were seeded. To further determine cell 
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proliferation on 3D scaffolds, we did the time course study by culturing the cells on PT and 

3D scaffolds until 12 days after confluence on TCPS. The cell number showed that although 

low proliferation was found on 3D scaffolds in the early stage of culture (confluence on 

TCPS), cells continued proliferating for the next 12 days. In contract, on PT surfaces the cell 

number peaked 8 days post confluence and a significant decrease occurred after, which is 

consistent with previous research showing a decrease of DNA content in osteoblasts cultured 

on TCPS and polished Ti surface after 9 days  of culture [25]. These results indicate that 3D 

structures, which have higher surface area, can support cell proliferation in long term cultures. 

The osteoblast differentiation markers ALP activities and OCN had higher levels on 3D 

scaffolds than those on PT through the entire culture time. Osteocalcin which is the late 

osteoblast differentiation marker, had 5-7 fold higher level on 3D scaffolds in the early stage 

of culture then went back to 2-3 folds in the later stage, revealing that the osteoblast 

maturation is much faster on 3D scaffolds and the enhancement effects of 3D structures could 

last for a considerable period of time. Similar effects of 3D structures on MG63 cell response 

were also found in OPG and VEGF. ALP activities level fluctuated on 3D scaffolds can be 

attributed to the biphasic nature of ALP, which has been shown before to increase in early 

stage of osteoblast differentiation followed by a decrease when some mature osteoblasts start 

producing osteocalcin [41], and with the proliferation continued on 3D scaffolds, ALP 

activities went up and down alternately. At 12 day post-confluence, ALP activity was still 

significantly higher on 3D scaffolds than that on PT, indicating further differentiation 

potential. Taken together of these results, 3D porous scaffolds provide osteoblasts a more 

robust environment to commence differentiation in early stage of culture and to continue 

support differentiation in long time course. 
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4.5 Conclusion 

In this study, we have evaluated the effect of porous 3D Ti scaffolds on osteoblast maturation 

and the critical role of integrin β1 and α2β1 in the maturation process. MG63 osteoblast-like 

cells and human osteoblasts were sensitive to the 3D structure, and the 3D structures 

enhanced osteoblast maturation, as all 3D groups had lower cell numbers and higher levels of 

differentiation markers compared to PT Ti discs. Moreover, cell number, differentiation and 

local factor production were also regulated by surface roughness, as the acid etched 3D 

scaffolds had the lowest cell number and highest ALP activity. The silencing of integrin β1 

partially abolished and α2β1 completely abolished the structural effects of 3D structures and 

surface roughness, indicating that integrin β1 subunit and α2β1 heterodimer play a critical 

role during the maturation of MG63 cells. The time course study showed the fact that 

osteoblasts on 3D scaffold maturate faster than those on surfaces, as higher osteocalcin and 

local growth factors production started in the early stage of culturing time. The osteocalcin 

showed 5 to 7 folds higher than control in the earlier time point then went back to 2 to 3 folds. 

ALP activities went up and down alternately and 12 day post-confluence, ALP activity was 

still significantly higher on 3D scaffolds than that on PT, indicating further differentiation 

potential. Overall, our study shows that 3D scaffolds can be used as promising designs of 

bone implants and bone regeneration scaffolds for clinical and tissue engineering applications. 
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Chapter	5.	Summary	

5.1 Fabrication of Hydroxyapatite Nanoparticles and Functional Peptide Modified 

Polycaprolactone Electrospun Meshes and Thermal Polymerized Alginate Hydrogels 

Biodegradable polymers are considered to be an ideal choice for tissue engineering scaffolds. 

For bone repair and regeneration specifically, PCL has been widely used because of its slow 

degradability, good biocompatibility, and superior rheological and viscoelastic properties. 

The design and preparation of nanoscale fine structures have attracted great attention because 

of their potential unique properties and applications. In this study, electrospinning technique 

was used to fabricate nano to micro scale PCL fibers. Fiber diameter was adjusted by the 

solution concentration and solvent polarity and the mesh morphology was altered by different 

collectors. To further enhance the biocompatibility, hydroxyapatite nanocrystals were used as 

the filler, and the functional peptides were conjugated to the PCL surface to promote the cell 

affinity. Besides PCL electrospun fibers, alginate was modified with glycidyl methacrylate 

(GMA) to produce an alginate-GMA (AA-GMA) macromonomer, which polymerized at 

physiological temperature when using APS as an initiator and TEMED as a catalyst. AA-

GMA hydrogels exhibited a three-dimensional porous structure with an average pore size 

ranging from 50-150μm, and the pore size increased with deceasing macromonomer gel 

content. Muscle injection in vivo showed the AA-GMA solution mixed with initiator could 

form a hydrogel in situ and exhibited a mild inflammatory response. Human endothelial cells 

(HUVECs) were encapsulated in the AA-GMA hydrogels in situ at body temperature. Cell 

viability remained good at low and high macromonomer concentrations and cells proliferated 

well in the hydrogels.  

5.2 Fabrication of Electrospun titania-based nanofiber meshes and evaluations of the 

morphology and osteogenic potential 

Ceramic scaffolds have been considered as bone graft substitutes for bone regeneration 

applications because of their excellent biocompatibility and bioactive properties. It is also 
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well known that titanium is widely used for implant applications because of its good 

mechanical properties and biocompatible oxide layer, titania. Similar to titania, silica-

containing bioglass products can have beneficial osteoconductive functions. In the first study, 

we have evaluated the effect of silica content on the crystal phase and fiber diameter of silica-

titania nanofiber meshes and the resulting osteoinductive effects of the meshes on MSCs. The 

surface roughness, fiber diameter, and crystal phase of the meshes could be varied by only 

changing the ratio of sol composition. All silica-titania mesh groups supported MSC viability, 

as the cells grew throughout the entire surface. The silica-titania fibrous meshes enhanced the 

MSC osteogenic differentiation, as all experimental groups had higher levels of osteogenic 

differentiation markers when compared to the glass control. These results indicate that cell 

response is sensitive to silica-titania substrates. In the second study, we eliminated the effect 

of different chemistry and crystal type, and only focused on the micro-scale and nano-scale 

surface roughness. We have evaluated the effect of porous and nano-fibrous TiO2 meshes on 

the proliferation, differentiation, and local factor production of osteoblasts. The surface 

roughness and fiber diameter of the meshes could be varied without affecting their chemistry 

or crystal structure, emphasizing the effect of the structural parameters on cell response. The 

different TiO2 mesh groups supported osteoblast viability. Although cell morphology was 

similar on all TiO2 mesh groups, cell response was sensitive to the substrate. Osteoblast 

proliferation was controlled by surface micro-roughness, whereas differentiation and local 

factor production were affected by both surface micro-scale pattern and nano-fiber diameter, 

indicating that osteoblasts are sensitive to both the micro-roughness and the nano-topography 

created by the TiO2 nano-fibers. Finally, the combination of micro-roughness with the nano-

topography created by the larger nano-fibers enhanced osteoblast differentiation and local 

factor production, indicating that there might be a lower-limit threshold in the size of the 

nano-fibers that could be sensed by the osteoblasts to differentiate and generate an osteogenic 
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environment. In conclusion, inorganic scaffold structural cues can be used to drive cell 

differentiation and create an osteogenic environment without the use of exogenous factors 

and, thus, structural parameters should be carefully considered when designing a scaffold for 

tissue engineering applications. 

5.3 Three-dimensional titanium scaffolds promote osteoblast maturation and integrin 

α2β1 mediated mechanism 

Titanium and its alloys are the most commonly used materials for implants in dental and 

orthopedic applications because of their mechanical properties and good biological 

performance. To enhance the osseointegration, implants with rough surfaces have become the 

current standard. Compared to rough surfaces, 3D porous scaffolds allow for bone to grow 

into the component providing enhanced fixation and produces a system which enables 

stresses to be transferred from the implant to the bone. In this study, we have evaluated the 

effect of porous 3D Ti scaffolds on osteoblast maturation and the critical role of integrin β1 

and α2β1 in the maturation process. MG63 osteoblast-like cells and human osteoblasts were 

sensitive to the 3D structure, and the 3D structures enhanced osteoblast maturation, as all 3D 

groups had lower cell numbers and higher levels of differentiation markers compared to PT 

Ti discs. Moreover, cell number, differentiation and local factor production were also 

regulated by surface roughness, as the acid etched 3D scaffolds had the lowest cell number 

and highest ALP activity. The silencing of integrin β1 partially abolished and α2β1 

completely abolished the structural effects of 3D structures and surface roughness, indicating 

that integrin β1 subunit and α2β1 heterodimer play a critical role during the maturation of 

MG63 cells. The time course study showed the fact that osteoblasts on 3D scaffold maturate 

faster than those on surfaces, as higher osteocalcin and local growth factors production 

started in the early stage of culturing time. The osteocalcin showed 5 to 7 folds higher than 

control in the earlier time point then went back to 2 to 3 folds. ALP activities went up and 
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down alternately and 12 day post-confluence, ALP activity was still significantly higher on 

3D scaffolds than that on PT, indicating further differentiation potential.  

5.4 Conclusion 

In this dissertation, we first focused on the polymer materials to construct scaffolds for tissue 

engineering, including electrospun fibrous scaffolds and thermal-crosslinked hydrogel. The 

electrospun fiber morphology was adjusted by altering the concentration, solvent and 

collector patterns, and the biocompatibility was further enhanced by bioactive ceramic 

additive and functional peptide conjugation. The importance of these modifications was 

shown by cell and animal studies. Thermal crosslinked alginate hydrogel was synthesized by 

adding methacrylic group. The biocompatibility of the hydrogel was evaluated by HUVEC 

cell encapsulation. 

Second, we moved on to study pure ceramic scaffolds, titania-silica binary materials and pure 

titania respectively. Both of the materials supported cell growth and osteoblast differentiation. 

For the titania-silica binary materials, the increase of titania content increased crystallization 

degree and both the chemistry change and different crystallization seemed to affect MSC 

differentiation toward osteoblast, as titania-silia7-3 group had highest level of differentiation 

markers compared to control. In the second study we focused on the structural cue by using 

pure titania material to fabricate four different meshes with different micro and nano surface 

roughness. We found fibrous meshes with higher micro roughness and relatively higher 

nanofiber diameter had the most promising results, indicating micro roughness and nano fiber 

diameter synergistically affect osteoblast maturation. 

Third, in clinical application, especially load-bearing application, metallic materials are the 

most widely used materials. We designed a novel titanium 3D porous scaffold with surface 

roughness modification on the titanium wires, to study the osteogenic effect of this type of 

scaffold. We found a significant increase of the osteogenic markers on 3D scaffolds 
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compared to the 2D surfaces, and the surface modification had an additive effect on ALP 

activity. The mechanism which drives cells to see the structural difference was evaluated by 

integrin silencing. The silencing of integrin β1 partially abolished and α2β1 completely 

abolished the structural effects of 3D structures and surface roughness, indicating that 

integrin β1 subunit and α2β1 heterodimer play a critical role during the maturation of MG63 

cells. 

In summary, we’ve fabricated different type of tissue engineering scaffolds and carefully 

evaluate the parameters of these scaffolds which affect cell response. Overall, our study 

shows that 3D scaffolds can be used as promising designs of bone implants and bone 

regeneration scaffolds for clinical and tissue engineering applications.
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